Skip to main content
Log in

Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres?

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Duchenne muscular dystrophy (DMD) is the most common form of progressive childhood muscular dystrophy associated with weakness of limbs, loss of ambulation, heart weakness and early death. The mutations causing either loss-of-expression or function of the full-length protein dystrophin (Dp427) from the DMD gene are responsible for the disease pathology. Dp427 forms a part of the large dystroglycan complex, called DAPC, in the sarcolemma, and its absence derails muscle contraction. Muscle biopsies from DMD patients show an overactivation of excitation-contraction-coupling (ECC) activable calcium incursion, sarcolemmal ROS production, NHE1 activation, IL6 secretion, etc. The signalling pathways, like Akt/PBK, STAT3, p38MAPK, and ERK1/2, are also hyperactive in DMD. These pathways are responsible for post-mitotic trophic growth and metabolic adaptation, in response to exercise in healthy muscles, but cause atrophy and cell death in dystrophic muscles. We hypothesize that the metabolic background of repressed glycolysis in DMD, as opposed to excess glycolysis seen in cancers or healthy contracting muscles, changes the outcome of these ‘growth pathways’. The reduced glycolysis has been considered a secondary outcome of the cytoskeletal disruptions seen in DMD. Given the cytoskeleton-crosslinking ability of the glycolytic enzymes, we hypothesize that the failure of glycogenolytic and glycolytic enzymes to congregate is the primary pathology, which then affects the subsarcolemmal cytoskeletal organization in costameres and initiates the pathophysiology associated with DMD, giving rise to the tissue-specific differences in disease progression between muscle, heart and brain. The lacunae in the regulation of the key components of the hypothesized metabolome, and the limitations of this theory are deliberated. The considerations for developing future therapies based on known pathological processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abreu P. 2018 Bioenergetics mechanisms regulating muscle stem cell self-renewal commitment and function. Biomed. Pharmacother. 103, 463–472.

    Article  CAS  Google Scholar 

  • Aggen J. B., Nairn A. C. and Chamberlin R. 2000 Regulation of protein phosphatase-1. Chem. Biol. 7, R13–R23.

    Article  CAS  Google Scholar 

  • Alexander M. S., Casar J. C., Motohashi N., Vieira N. M., Eisenberg I., Marshall J. L. et al. 2014 MicroRNA-486-dependent modulation of DOCK3/PTEN/AKT signaling pathways improves muscular dystrophy–associated symptoms. J. Clin. Invest. 124, 2651–2667.

    Article  CAS  Google Scholar 

  • Al-Khalili L., Bouzakri K., Glund S., Lönnqvist F., Koistinen H. A. and Krook A. 2006 Signaling specificity of interleukin-6 action on glucose and lipid metabolism in skeletal muscle. Mol. Endocrinol. (Baltimore) 20, 3364–3375.

  • Al-Rewashdy H., Ljubicic V., Lin W., Renaud J.-M. and Jasmin B. J. 2015 Utrophin A is essential in mediating the functional adaptations of mdx mouse muscle following chronic AMPK activation. Hum. Mol. Genet. 24, 1243–1255.

    Article  CAS  Google Scholar 

  • Arnold D. L., Taylor D. J. and Radda G. K. 1985 Investigation of human mitochondrial myopathies by phosphorous magnetic resonance spectroscopy. Ann. Neurol. 18, 189–196.

    Article  CAS  Google Scholar 

  • Assereto S., Piccirillo R., Baratto S., Scudieri P., Fiorillo C., Massacesi M. et al. 2016 The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy. Lab. Invest. 96, 862–871.

    Article  CAS  Google Scholar 

  • Bajanca F. and Vandel L. 2017 Epigenetic regulators modulate muscle damage in Duchenne muscular dystrophy model. PLoS Curr 9, ecurrents, https://doi.org/10.1371/currents.md.f1e2379fa632f8135577333dd92ca83b.

    Article  Google Scholar 

  • Barthélémy F., Defour A., Lévy N., Krahn M. and Bartoli M. 2018 Muscle cells fix breaches by orchestrating a membrane repair ballet. J. Neuromuscul. Dis. 5, 21–28.

    Article  Google Scholar 

  • Bassols A., Andrés V., Ballarín M., Mahy N., Carreras J. and Cussó R. 1991 Identification of guanine and adenine nucleotides as activators of glucose-1,6-bisphosphatase activity from rat skeletal muscle. Arch. Biochem. Biophys. 291, 121–125.

    Article  CAS  Google Scholar 

  • Beitner R. 1984 Control of levels of glucose 1,6-bisphosphate. Int. J. Biochem. 16, 579–585.

    Article  CAS  Google Scholar 

  • Beitner R. 1993 Control of glycolytic enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions. The role of Ca2+ and calmodulin. Int. J. Biochem. 25, 297–305.

    Article  CAS  Google Scholar 

  • Belanto J. J., Mader T. L., Eckhoff M. D., Strandjord D. M., Banks G. B., Gardner M. K. et al. 2014 Microtubule binding distinguishes dystrophin from Utrophin. Proc. Natl. Acad. Sci. USA 111, 5723–5728.

    Article  CAS  Google Scholar 

  • Belanto J. J., Olthoff J. T., Mader T. L., Chamberlain C. M., Nelson D. M., McCourt P. M. et al. 2016 Independent variability of microtubule perturbations associated with dystrophinopathy. Hum. Mol. Genet. 25, 4951–4961.

    CAS  Google Scholar 

  • Bengal E., Aviram S. and Hayek T. 2020 p38 MAPK in Glucose metabolism of skeletal muscle: beneficial or harmful? Int. J. Mol. Sci., https://doi.org/10.3390/ijms21186480.

    Article  Google Scholar 

  • Bettica P., Petrini S., D’Oria V., D’Amico A., Catteruccia M., Pane M. et al. 2016 Histological effects of givinostat in boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 26, 643–649.

    Article  Google Scholar 

  • Bkaily G. and Jacques D. 2017 Na+-H+ exchanger and proton channel in heart failure associated with Becker and Duchenne muscular dystrophies. Can. J. Physiol. Pharmacol. 95, 1213–1223.

    Article  CAS  Google Scholar 

  • Bladen C. L., Salgado D., Monges S., Foncuberta M. E., Kekou K., Kosma K. et al. 2015 The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36, 395–402.

    Article  CAS  Google Scholar 

  • Blake D. J., Weir A., Newey S. E. and Davies K. E. 2002 Function and genetics of Dystrophin and Dystrophin-related proteins in muscle. Physiol. Rev. 82, 291–329.

    Article  CAS  Google Scholar 

  • Blomstrand E., Eliasson J., Karlsson H. K. and Köhnke R. 2006 Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise. J. Nutr. 136, 269S-273S.

    Article  CAS  Google Scholar 

  • Bonsett C. A., Rudman A. and Elliott A. Y. 1979 Intracellular lipid in pseudohypertrophic muscular dystrophy tissue culture. J. Ind. State Med. Assoc. 72, 184–187.

    CAS  Google Scholar 

  • Boppart M. D. and Mahmassani Z. S. 2019 Integrin signaling: linking mechanical stimulation to skeletal muscle hypertrophy. Am. J. Physiol. Cell Physiol. 317, C629–C641.

    Article  Google Scholar 

  • Boppart M. D., Burkin D. J. and Kaufman S. J. 2011 Activation of AKT signaling promotes cell growth and survival in α7β1 integrin-mediated alleviation of muscular dystrophy. Biochim. Biophys. Acta. 1812, 439–446.

    Article  CAS  Google Scholar 

  • Brennan-Minnella A. M., Won S. J. and Swanson R. A. 2015 NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid. Redox Signal. 22, 161–174.

    Article  CAS  Google Scholar 

  • Bueno Júnior C. R., Pantaleão L. C., Voltarelli V. A., Bozi L. H. M., Brum P. C. and Zatz M. 2012 Combined effect of AMPK/PPAR agonists and exercise training in mdx mice functional performance. PLoS ONE 7, e45699.

    Article  Google Scholar 

  • Burkin D. J., Wallace G. Q., Nicol K. J., Kaufman D. J. and Kaufman S. J. 2001 Enhanced expression of the α7β1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. J. Cell Biol. 152, 1207–1218.

    Article  CAS  Google Scholar 

  • Cai X., Yuan Y., Liao Z., Xing K., Zhu C., Xu Y. et al. 2018 α-Ketoglutarate prevents skeletal muscle protein degradation and muscle atrophy through PHD3/ADRB2 pathway. FASEB J. 32, 488–499.

    Article  CAS  Google Scholar 

  • Canato M., Dal Maschio M., Sbrana F., Raiteri R., Reggiani C., Vassanelli S. et al. 2010 Mechanical and electrophysiological properties of the sarcolemma of muscle fibers in two murine models of muscle Dystrophy: Col6a1/ and Mdx. J. Biotechnol. Biomed. 2010, 981945.

    Article  CAS  Google Scholar 

  • Capitanio D., Moriggi M., Torretta E., Barbacini P., De Palma S., Viganò A. et al. 2020 Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J. Cachexia Sarcopenia Muscle. 11, 547–563.

    Article  Google Scholar 

  • Carey A. L., Steinberg G. R., Macaulay S. L., Thomas W. G., Holmes A. G., Ramm G. et al. 2006 Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 55, 2688–2697.

    Article  CAS  Google Scholar 

  • Chang N. C., Chevalier F. P. and Rudnicki M. A. 2016 Satellite cells in muscular dystrophy – lost in polarity. Trends Mol. Med. 22, 479–496.

    Article  CAS  Google Scholar 

  • Chin R. M., Fu X., Pai M. Y., Vergnes L., Hwang H., Deng G. et al. 2014 The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510, 397–401.

    Article  CAS  Google Scholar 

  • Chinet A. E., Even P. C. and Decrouy A. 1994 Dystrophin-dependent efficiency of metabolic pathways in mouse skeletal muscles. Experientia 50, 602–605.

    Article  CAS  Google Scholar 

  • Chinopoulos C. 2013 Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex. J. Neurosci. Res. 91, 1030–1043.

    Article  CAS  Google Scholar 

  • Cokorinos E. C., Delmore J., Reyes A. R., Albuquerque B., Kjøbsted R., Jørgensen N. O. et al. 2017 Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147–1159.

    Article  CAS  Google Scholar 

  • Coleman A. K., Joca H. C., Shi G., Lederer W. J. and Ward C. W. 2021 Tubulin acetylation increases cytoskeletal stiffness to regulate mechanotransduction in striated muscle. J. Gen. Physiol. 153, e202012743.

    Article  CAS  Google Scholar 

  • Colussi C., Mozzetta C., Gurtner A., Illi B., Rosati J., Straino S. et al. 2008 HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment. Proc. Natl. Acad. Sci. USA 105, 19183–19187.

    Article  CAS  Google Scholar 

  • Combes A., Dekerle J., Webborn N., Watt P., Bougault V. and Daussin F. N. 2015 Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Physiol. Rep. 3, e12462.

    Article  Google Scholar 

  • Dabaj I., Ferey J., Marguet F., Gilard V., Basset C., Bahri Y. et al. 2021 Muscle metabolic remodelling patterns in Duchenne muscular dystrophy revealed by ultra-high-resolution mass spectrometry imaging. Sci. Rep. 11, 1906.

    Article  CAS  Google Scholar 

  • De Palma C., Morisi F., Cheli S., Pambianco S., Cappello V., Vezzoli M. et al. 2012 Autophagy as a new therapeutic target in Duchenne muscular dystrophy. Cell Death Dis. 3, e418.

    Article  Google Scholar 

  • Delacroix C., Hyzewicz J., Lemaitre M., Friguet B., Li Z., Klein A. et al. 2018 Improvement of dystrophic muscle fragility by short-term voluntary exercise through activation of Calcineurin pathway in mdx mice. Am. J. Pathol. 188, 2662–2673.

    Article  CAS  Google Scholar 

  • Deldicque L., Atherton P., Patel R., Theisen D., Nielens H., Rennie M. J. et al. 2008 Decrease in Akt/PKB signalling in human skeletal muscle by resistance exercise. Eur. J. Appl. Physiol. 104, 57–65.

    Article  CAS  Google Scholar 

  • Dent J. R., Hetrick B., Tahvilian S., Sathe A., Greyslak K., LaBarge S. A. et al. 2019 Skeletal muscle mitochondrial function and exercise capacity are not impaired in mice with knockout of STAT3. J. Appl. Physiol. 127, 1117–1127.

  • Depre C., Vanoverschelde J.-L.J. and Taegtmeyer H. 1999 Glucose for the heart. Circulation 99, 578–588.

    Article  CAS  Google Scholar 

  • Di Mauro S., Angelini C. and Catani C. 1967 Enzymes of the glycogen cycle and glycolysis in various human neuromuscular disorders. J. Neurol. Neurosurg. Psychiat. 30, 411–415.

    Article  Google Scholar 

  • Dominy J. E. Jr., Lee Y., Gerhart-Hines Z. and Puigserver P. 2010 Nutrient-dependent regulation of PGC-1alpha’s acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta. 1804, 1676–1683.

    Article  CAS  Google Scholar 

  • Duan D., Goemans N., Takeda S., Mercuri E. and Aartsma-Rus A. 2021 Duchenne muscular dystrophy. Nat. Rev. Dis. Primers. 7, 13.

    Article  Google Scholar 

  • Dumont N. A., Wang Y. X., Maltzahn J., Von Pasut A., Bentzinger C. F., Brun C. E. et al. 2015 Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat. Med. 21, 1455–1463.

    Article  CAS  Google Scholar 

  • Eichhorn P. J. A., Creyghton M. P. and Bernards R. 2009 Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta Rev. Cancer. 1795, 1–15.

    Article  CAS  Google Scholar 

  • Ellis D. A. 1980 Intermediary metabolism of muscle in Duchenne muscular dystrophy. Br. Med. Bull. 36, 165–172.

    Article  CAS  Google Scholar 

  • Ervasti J. M. 2007 Dystrophin, its interactions with other proteins, and implications for muscular dystrophy. Biochim. Biophys. Acta. Mol. Basis. Dis. 1772, 108–117.

    Article  CAS  Google Scholar 

  • Ervasti J. M., Ohlendieck K., Kahl S. D., Gaver M. G. and Campbell K. P. 1990 Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345, 315–319.

    Article  CAS  Google Scholar 

  • Faist V., König J., Höger H. and Elmadfa I. 2001 Decreased mitochondrial oxygen consumption and antioxidant enzyme activities in skeletal muscle of dystrophic mice after low-intensity exercise. Ann. Nutr. Metab. 45, 58–66.

    Article  CAS  Google Scholar 

  • Fan M., Rhee J., St-Pierre J., Handschin C., Puigserver P., Lin J. et al. 2004 Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: Modulation by p38 MAPK. Genes Dev. 18, 278–289.

    Article  CAS  Google Scholar 

  • Feron M., Guevel L., Rouger K., Dubreil L., Arnaud M. C., Ledevin M. et al. 2009 PTEN contributes to profound PI3K/Akt signaling pathway deregulation in dystrophin-deficient dog muscle. Am. J. Pathol. 174, 1459–1470.

    Article  CAS  Google Scholar 

  • Ford-Speelman D. L., Roche J. A., Bowman A. L. and Bloch R. J. 2009 The Rho-Guanine nucleotide exchange factor domain of Obscurin activates RhoA signaling in skeletal muscle. Mol. Biol. Cell. 20, 3905–3917.

    Article  CAS  Google Scholar 

  • Frederick D. W., McDougal A. V., Semenas M., Vappiani J., Nuzzo A., Ulrich J. C. et al. 2020 Complementary NAD+ replacement strategies fail to functionally protect dystrophin-deficient muscle. Skelet. Muscle. 10, 30.

    Article  CAS  Google Scholar 

  • Frucht H., Kaplansky M. and Beitner R. 1984 Increase in glucose 1,6-bisphosphate levels, activation of phosphofructokinase and phosphoglucomutase, and inhibition of glucose 1,6-bisphosphatase in muscle induced by trifluoperazine. Biochem. Med. 31, 122–129.

    Article  CAS  Google Scholar 

  • Fulco M., Cen Y., Zhao P., Hoffman E. P., McBurney M. W., Sauve A. A. et al. 2008 Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell. 14, 661–673.

    Article  CAS  Google Scholar 

  • Galbiati F., Volonté D., Engelman J. A., Scherer P. E. and Lisanti M. P. 1999 Targeted down-regulation of Caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts: transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J. Biol. Chem. 274, 30315–30321.

    Article  CAS  Google Scholar 

  • Garcia D. and Shaw R. J. 2017 AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol. Cell. 66, 789–800.

    Article  CAS  Google Scholar 

  • Ge J., Cui H., Xie N., Banerjee S., Guo S., Dubey S. et al. 2018 Glutaminolysis promotes collagen translation and stability via a-ketoglutarate-mediated mTOR activation and proline hydroxylation. Am. J. Respir. Cell Mol. Biol. 58, 378–390.

    Article  CAS  Google Scholar 

  • Gibbs E. M., Marshall J. L., Ma E., Nguyen T. M., Hong G., Lam J. S. et al. 2016 High levels of sarcospan are well tolerated and act as a sarcolemmal stabilizer to address skeletal muscle and pulmonary dysfunction in DMD. Hum. Mol. Genet. 25, 5395–5406.

    CAS  Google Scholar 

  • Gibbs E. M., McCourt J. L., Shin K. M., Hammond K. G., Marshall J. L. and Crosbie R. H. 2021 Loss of sarcospan exacerbates pathology in mdx mice, but does not affect utrophin amelioration of disease. Hum. Mol. Genet. 30, 149–159.

    Article  CAS  Google Scholar 

  • Gupte S. A., Levine R. J., Gupte R. S., Young M. E., Lionetti V., Labinskyy V. et al. 2006 Glucose-6-phosphate dehydrogenase-derived NADPH fuels superoxide production in the failing heart. J. Mol. Cell. Cardiol. 41, 340–349.

    Article  CAS  Google Scholar 

  • Hafner P., Bonati U., Klein A., Rubino D., Gocheva V., Schmidt S. et al. 2019 Effect of combination l-Citrulline and Metformin treatment on motor function in patients with Duchenne muscular dystrophy: A randomized clinical trial. JAMA Netw. Open. 2, e1914171–e1914171.

    Article  Google Scholar 

  • Han S., Cui C., Zhao X., Zhang Y., Zhang Y., Zhao J. et al. 2021 Filamin C regulates skeletal muscle atrophy by stabilizing dishevelled-2 to inhibit autophagy and mitophagy. Mol. Ther. Nucleic Acids 27, P147–P164.

    Article  Google Scholar 

  • Handschin C., Rhee J., Lin J., Tarr P. T. and Spiegelman B. M. 2003 An autoregulatory loop controls peroxisome proliferator-activated receptor γ coactivator 1α expression in muscle. Proc. Natl. Acad. Sci. USA 100, 7111–7116.

    Article  CAS  Google Scholar 

  • Herbelet S., Rodenbach A., De Paepe B. and De Bleecker J. L. 2020 Anti-Inflammatory and general glucocorticoid physiology in skeletal muscles affected by Duchenne muscular dystrophy: exploration of steroid-sparing agents. Int. J. Mol. Sci. 21, 4596.

    Article  CAS  Google Scholar 

  • Heydemann A. 2017 Severe murine limb-girdle muscular dystrophy type 2C pathology is diminished by FTY720 treatment. Muscle Nerve 56, 486–494.

    Article  CAS  Google Scholar 

  • Hindi S. M., Sato S., Choi Y. and Kumar A. 2014 Distinct roles of TRAF6 at early and late stages of muscle pathology in the mdx model of Duchenne muscular dystrophy. Hum. Mol. Genet. 23, 1492–1505.

    Article  CAS  Google Scholar 

  • Hodges B. L., Hayashi Y. K., Nonaka I., Wang W., Arahata K. and Kaufman S. J. 1997 Altered expression of the alpha7beta1 integrin in human and murine muscular dystrophies. J. Cell Sci. 110, 2873–2881.

    Article  CAS  Google Scholar 

  • Hodson N., West D., Philp A., Burd N. A. and Moore D. R. 2019 Molecular regulation of human skeletal muscle protein synthesis in response to exercise and nutrients: a compass for overcoming age-related anabolic resistance. Am. J. Physiol. Cell Physiol. 317, C1061–C1078.

    Article  CAS  Google Scholar 

  • Hoffman E. P., Brown R. H. and Kunkel L. M. 1987 Dystrophin: The protein product of the Duchenne muscular dystrophy locus. Cell 51, 919–928.

    Article  CAS  Google Scholar 

  • Hoyte K., Jayasinha V., Xia B. and Martin P. T. 2004 Transgenic overexpression of Dystroglycan does not inhibit muscular dystrophy in mdx mice. Am. J. Pathol. 164, 711–718.

    Article  CAS  Google Scholar 

  • Hughes M. C., Ramos S. V., Turnbull P. C., Rebalka I. A., Cao A., Monaco C. M. F. et al. 2019 Early myopathy in Duchenne muscular dystrophy is associated with elevated mitochondrial H2O2 emission during impaired oxidative phosphorylation. J. Cachexia Sarcopenia Muscle 10, 643–661.

    Article  Google Scholar 

  • Hutter O. F. 1992 The membrane hypothesis of Duchenne muscular dystrophy: Quest for functional evidence. J. Inherit. Metab. Dis. 15, 565–577.

    Article  CAS  Google Scholar 

  • Ieronimakis N., Pantoja M., Hays A. L., Dosey T. L., Qi J., Fischer K. A. et al. 2013 Increased sphingosine-1-phosphate improves muscle regeneration in acutely injured mdx mice. Skelet. Muscle 3, 20.

    Article  Google Scholar 

  • Iwata Y., Katanosaka Y., Hisamitsu T. and Wakabayashi S. 2007 Enhanced Na+/H+ exchange activity contributes to the pathogenesis of muscular dystrophy via involvement of P2 receptors. Am. J. Pathol. 171, 1576–1587.

    Article  CAS  Google Scholar 

  • Jato-Rodriguez J., Liang C. R., Lin C. H., Hudson A. J. and Strickland K. P. 1975 Comparison of the intermediary metabolism of fatty acids in denervated and dystrophic murine skeletal muscle. J. Neurol. Neurosurg. Psychiatry 38, 1083–1089.

  • Johnson E. K., Li B., Yoon J. H., Flanigan K. M., Martin P. T. and Ervasti J. 2013 Identification of new dystroglycan complexes in skeletal muscle. PLoS ONE 8, e73224.

    Article  CAS  Google Scholar 

  • Jones L., Naidoo M., Machado L. R. and Anthony K. 2021 The Duchenne muscular dystrophy gene and cancer. Cell. Oncol. 44, 19–32.

    Article  CAS  Google Scholar 

  • Juan-Mateu J., Gonzalez-Quereda L., Rodriguez M. J., Baena M., Verdura E., Nascimento A. et al. 2015 DMD mutations in 576 dystrophinopathy families: A step forward in genotype-phenotype correlations. PLoS One 10, e0135189.

    Article  Google Scholar 

  • Juretić N., Díaz J., Romero F., González G., Jaimovich E. and Riveros N. 2017 Interleukin-6 and neuregulin-1 as regulators of utrophin expression via the activation of NRG-1/ErbB signaling pathway in mdx cells. Biochim. Biophys. Acta. Mol. Basis Dis. 1863, 770–780.

    Article  Google Scholar 

  • Katz A. 2022 A century of exercise physiology: key concepts in regulation of glycogen metabolism in skeletal muscle. Eur. J. Appl. Physiol. 122, 1751–1772.

    Article  Google Scholar 

  • Kerr J. P., Robison P., Shi G., Bogush A. I., Kempema A. M., Hexum J. K. et al. 2015 Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat. Commun. 6, 8526.

    Article  CAS  Google Scholar 

  • Kielbasa O. M., Reynolds J. G., Wu C. L., Snyder C. M., Cho M. Y., Weiler H. et al. 2011 Myospryn is a calcineurin-interacting protein that negatively modulates slow-fiber-type transformation and skeletal muscle regeneration. FASEB J. 25, 2276–2286.

    Article  CAS  Google Scholar 

  • Kistner T. M., Pedersen B. K. and Lieberman D. E. 2022 Interleukin 6 as an energy allocator in muscle tissue. Nat. Metab. 4, 170–179.

    Article  CAS  Google Scholar 

  • Kjøbsted R., Hingst J. R., Fentz J., Foretz M., Sanz M. N., Pehmøller C. et al. 2018 AMPK in skeletal muscle function and metabolism. FASEB J. 32, 1741–1777.

    Article  Google Scholar 

  • Koenig M., Hoffman E. P., Bertelson C. J., Monaco A. P., Feener C. and Kunkel L. M. 1987 Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50, 509–517.

    Article  CAS  Google Scholar 

  • Kuno A. and Horio Y. 2016 SIRT1: A novel target for the treatment of muscular dystrophies. Oxid. Med. Cell. Longev. 2016, 6714686.

    Article  Google Scholar 

  • Kuznetsov A. V., Winkler K., Wiedemann F. R., Von Bossanyi P., Dietzmann K. and Kunz W. S. 1998 Impaired mitochondrial oxidative phosphorylation in skeletal muscle of the dystrophin-deficient mdx mouse. Mol. Cell. Biochem. 183, 87–96.

    Article  CAS  Google Scholar 

  • Landi N., Nassi P., Liguri G., Bobbi S., Sbrilli C. and Marconi G. 1986 Sarcoplasmic reticulum Ca2+-ATPase and acylphosphatase activities in muscle biopsies from patients with Duchenne muscular dystrophy. Clin. Chim. Acta. 158, 245–251.

    Article  CAS  Google Scholar 

  • Le S., Yu M., Hovan L., Zhao Z., Ervast J. and Yan J. 2018 Dystrophin as a molecular shock absorber. ACS Nano 12, 12140–12148.

    Article  CAS  Google Scholar 

  • Lebrasseur N. K., Coté G. M., Miller T. A., Fielding R. A. and Sawyer D. B. 2003 Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle. Am. J. Physiol. Cell Physiol. 284, C1149–C1155.

    Article  CAS  Google Scholar 

  • Li C., Deng Z., Zheng G., Xie T., Wei X., Huo Z. et al. 2021 Histone deacetylase 2 suppresses skeletal muscle atrophy and senescence via NF-κB signaling pathway in cigarette smoke-induced mice with emphysema. Int. J. Chron. Obstruct. Pulmon. Dis. 16, 1661–1675.

    Article  CAS  Google Scholar 

  • Li D., Long C., Yue Y. and Duan D. 2009 Sub-physiological sarcoglycan expression contributes to compensatory muscle protection in mdx mice. Hum. Mol. Genet. 18, 1209–1220.

    Article  CAS  Google Scholar 

  • Liang R. C. R. 1986 Studies on mitochondria from dystrophic skeletal muscle of mice. Biochem. Med. Metab. Biol. 36, 172–178.

    Article  CAS  Google Scholar 

  • Lindsay A., McCourt P. M., Karachunski P., Lowe D. A. and Ervasti J. M. 2018 Xanthine oxidase is hyper-active in Duchenne muscular dystrophy. Free Radic. Biol. Med. 129, 364–371.

    Article  CAS  Google Scholar 

  • Liu J., Milner D. J., Boppart M. D., Ross R. S. and Kaufman S. J. 2012 β1D chain increases α7β1 integrin and laminin and protects against sarcolemmal damage in mdx mice. Hum. Mol. Genet. 21, 1592–1603.

    Article  CAS  Google Scholar 

  • Liu X., Qu H., Zheng Y., Liao Q., Zhang L., Liao X. et al. 2018 Mitochondrial glycerol 3-phosphate dehydrogenase promotes skeletal muscle regeneration. EMBO Mol. Med. 10, e9390.

    Article  Google Scholar 

  • Ljubicic V., Burt M., Lunde J. A. and Jasmin B. J. 2014 Resveratrol induces expression of the slow, oxidative phenotype in mdx mouse muscle together with enhanced activity of the SIRT1-PGC-1α axis. American journal of physiology. Am. J. Physiol. Cell Physiol. 307, C66–C82.

    Article  CAS  Google Scholar 

  • Ljubicic V., Khogali S., Renaud J.-M. and Jasmin B. J. 2012 Chronic AMPK stimulation attenuates adaptive signaling in dystrophic skeletal muscle. Am. J. Physiol. Cell Physio. 302, C110–C121.

    Article  CAS  Google Scholar 

  • Loehr J. A., Wang S., Cully T. R., Pal R., Larina I. V., Larin K. V. et al. 2018 NADPH oxidase mediates microtubule alterations and diaphragm dysfunction in dystrophic mice. eLife 7, e31732.

    Article  Google Scholar 

  • Loh K. C., Leong W.-I., Carlson M. E., Oskouian B., Kumar A., Fyrst H. et al. 2012 Correction: Sphingosine-1-Phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PLoS ONE 7, 10.

    Article  Google Scholar 

  • Long C. Y., Widegren U. and Zierath J. R. 2004 Exercise-induced mitogen-activated protein kinase signalling in skeletal muscle. Proc. Nutr. Soc. 63, 227–232.

    Article  CAS  Google Scholar 

  • Ludlow A. T., Gratidão L., Ludlow L. W., Spangenburg E. E. and Roth S. M. 2017 Acute exercise activates p38 MAPK and increases the expression of telomere-protective genes in cardiac muscle. Exp. Physiol. 102, 397–410.

    Article  CAS  Google Scholar 

  • Lytridou A. A., Demetriadou A., Christou M., Potamiti L., Mastroyiannopoulos N. P., Kyriacou K. et al. 2020 Stbd1 promotes glycogen clustering during endoplasmic reticulum stress and supports survival of mouse myoblasts. J. Cell Sci. 133, 244855.

    Article  Google Scholar 

  • Mancinelli E., Sardini A., D’Aumiller A., Meola G., Martucci G., Cossu G. et al. 1989 Properties of acetylcholine-receptor activation in human Duchenne muscular dystrophy myotubes. Proc. Royal Soc. B. 237, 247–257.

    CAS  Google Scholar 

  • Marden J. R., Freimark J., Yao Z., Signorovitch J., Tian C. and Wong B. L. 2020 Real-world outcomes of long-term prednisone and deflazacort use in patients with Duchenne muscular dystrophy: experience at a single, large care center. J. Comp. Eff. Res. 9, 177–189.

    Article  Google Scholar 

  • Mareedu S., Million E. D., Duan D. and Babu G. J. 2021 Abnormal calcium handling in Duchenne muscular dystrophy: mechanisms and potential therapies. Front. Physiol. 12, 647010.

    Article  Google Scholar 

  • Markham L. W., Brinkmeyer-Langford C. L., Soslow J. H., Gupte M., Sawyer D. B., Kornegay J. N. et al. 2017 GRMD cardiac and skeletal muscle metabolism gene profiles are distinct. BMC Med. Genom. 10, 14–16.

    Article  Google Scholar 

  • Marshall J. L., Holmberg J., Chou E., Ocampo A. C., Oh J., Lee J. et al. 2012 Sarcospan-dependent Akt activation is required for utrophin expression and muscle regeneration. J. Cell Biol. 197, 1009–1027.

    Article  CAS  Google Scholar 

  • Martin D. B. and Vagelos P. R. 1962 Mechanism of tricarboxylic acid cycle regulation of fatty acid synthesis. Biochem. Biophys. Res. Commun. 7, 101–106.

    Article  CAS  Google Scholar 

  • Matthews E., Brassington R., Kuntzer T., Jichi F. and Manzur A. Y. 2016 Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 2016, CD003725.

    Google Scholar 

  • Mázala D. A. G., Pratt S. J. P., Chen D., Molkentin J. D., Lovering R. M. and Chin E. R. 2015 SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models. Am. J. Physiol. Cell Physiol. 308, C699–C709.

    Article  Google Scholar 

  • McGee S. L., Fairlie E., Garnham A. P. and Hargreaves M. 2009 Exercise-induced histone modifications in human skeletal muscle. J. Physiol. 587, 5951–5958.

    Article  CAS  Google Scholar 

  • Meier J. A., Hyun M., Cantwell M., Raza A., Mertens C., Raje V. et al. 2017 Stress-induced dynamic regulation of mitochondrial STAT3 and its association with cyclophilin D reduce mitochondrial ROS production. Sci. Signal. 10, 2aag2588.

    Article  Google Scholar 

  • Menard L., Maughan D. and Vigoreaux J. 2014 The structural and functional coordination of glycolytic enzymes in muscle: evidence of a metabolon? Biology 3, 623–644.

    Article  Google Scholar 

  • Mirzoev T. M., Sharlo K. A. and Shenkman B. S. 2021 The role of gsk-3β in the regulation of protein turnover, myosin phenotype, and oxidative capacity in skeletal muscle under disuse conditions. Int. J. Mol. Sci. 22, 5081.

    Article  CAS  Google Scholar 

  • Mokri B. and Engel A. G. 1975 Duchenne dystrophy: electron microscopic findings pointing to a basic or early abnormality in the plasma membrane of the muscle fiber. Neurology 25, 1111–1120.

    Article  CAS  Google Scholar 

  • Moresi V., Carrer M., Grueter C. E., Rifki O. F., Shelton J. M., Richardson J. A. et al. 2012 Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc. Natl. Acad. Sci. USA 109, 1649–1654.

    Article  CAS  Google Scholar 

  • Mucha O., Podkalicka P., Kaziród K., Samborowska E., Dulak J. and Łoboda A. 2021 Simvastatin does not alleviate muscle pathology in a mouse model of Duchenne muscular dystrophy. Skelet. Muscle. 11, 21.

    Article  CAS  Google Scholar 

  • Muntoni F., Wilson L., Marrosu G., Marrosu M. G., Cianchetti C., Mestroni L. et al. 1995 A mutation in the dystrophin gene selectively affecting dystrophin expression in the heart. J. Clin. Invest. 96, 693–699.

    Article  CAS  Google Scholar 

  • Nakamura A. 2015 X-linked dilated cardiomyopathy: a cardiospecific phenotype of dystrophinopathy. Pharmaceuticals 8, 303–320.

    Article  CAS  Google Scholar 

  • Nalbandian M., Radak Z. and Takeda M. 2019 N-acetyl-L-cysteine prevents lactate-mediated PGC1-alpha expression in C2C12 myotubes. Biology 8, 8–15.

    Article  Google Scholar 

  • Nalbandian M., Radak Z. and Takeda M. 2020 Lactate metabolism and satellite cell fate. Front. Physiol. 11, 610983.

    Article  Google Scholar 

  • Oddoux S., Randazzo D., Kenea A., Alonso B., Zaal K. J. M. and Ralston E. 2019 Misplaced Golgi elements produce randomly oriented Microtubules and aberrant cortical arrays of Microtubules in dystrophic skeletal muscle fibers. Front. Cell Dev. Biol. 7, 176.

    Article  Google Scholar 

  • Ogata T., Naito D., Nakanishi N., Hayashi Y. K., Taniguchi T., Miyagawa K. et al. 2014 MURC/Cavin-4 facilitates recruitment of ERK to caveolae and concentric cardiac hypertrophy induced by α1-adrenergic receptors. Proc. Natl. Acad. Sci. USA 111, 3811–3816.

    Article  CAS  Google Scholar 

  • Ogata T., Ueyama T., Isodono K., Tagawa M., Takehara N., Kawashima T. et al. 2008 MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol. Cell. Biol. 28, 3424–3436.

    Article  CAS  Google Scholar 

  • Olson E., Vignos P. J. Jr., Woodlook J. and Perry T. 1968 Oxidative phosphorylation of skeletal muscle in human muscular dystrophy. J. Lab. Clin. Med. 71, 220–231.

    CAS  Google Scholar 

  • O’Neil T. K., Duffy L. R., Frey J. W. and Hornberger T. A. 2009 The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J. Physiol. 587, 3691–3701.

    Article  CAS  Google Scholar 

  • Parvatiyar M. S., Brownstein A. J., Kanashiro-Takeuchi R. M., Collado J. R., Dieseldorff Jones K., M., Gopal J. et al. 2019 Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight. 5, e123855.

    Article  Google Scholar 

  • Pauly M., Daussin F., Burelle Y., Li T., Godin R., Fauconnier J. et al. 2012 AMPK activation stimulates autophagy and ameliorates Muscular dystrophy in the mdx mouse diaphragm. Am. J. Pathol. 181, 583–592.

    Article  CAS  Google Scholar 

  • Pedersen B. K. and Febbraio M. A. 2008 Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol. Rev. 88, 1379–1406.

    Article  CAS  Google Scholar 

  • Peter A. K. and Crosbie R. H. 2006 Hypertrophic response of Duchenne and Limb-girdle muscular dystrophies is associated with activation of Akt pathway. Exp. Cell Res. 312, 2580–2591.

    Article  CAS  Google Scholar 

  • Peter A. K., Cheng H., Ross R. S., Knowlton K. U. and Chen J. 2011 The costamere bridges sarcomeres to the sarcolemma in striated muscle. Prog. Pediatr. Cardiol. 31, 83–88.

    Article  Google Scholar 

  • Pitson S. M., Moretti P. A., Zebol J. R., Lynn H. E., Xia P., Vadas M. A. et al. 2003 Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491–5500.

    Article  CAS  Google Scholar 

  • Powers S. K., Duarte J., Kavazis A. N. and Talbert E. E. 2010 Reactive oxygen species are signalling molecules for skeletal muscle adaptation. Exp. Physiol. 95, 1–9.

    Article  CAS  Google Scholar 

  • Pradhan B. S. and Prószyński T. J. 2020 A role for Caveolin-3 in the pathogenesis of muscular dystrophies. Int. J. Mol. Sci. 21, 8736.

    Article  CAS  Google Scholar 

  • Previtali S. C., Gidaro T., Díaz-Manera J., Zambon A., Carnesecchi S., Roux-Lombard P. et al. 2020 Rimeporide as a first- in-class NHE-1 inhibitor: Results of a phase Ib trial in young patients with Duchenne muscular dystrophy. Pharmacol. Res. 159, 104999.

    Article  CAS  Google Scholar 

  • Prosser B. L., Khairallah R. J., Ziman A. P., Ward C. W. and Lederer W. J. 2013 X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca2+]i. J. Mol. Cell. Cardiol. 58, 172–181.

    Article  CAS  Google Scholar 

  • Pulido S. M., Passaquin A. C., Leijendekker W. J., Challet C., Wallimann T. and Ruegg U. T. 1998 Creatine supplementation improves intracellular Ca2+ handling and survival in mdx skeletal muscle cells. FEBS Lett. 439, 357–362.

    Article  CAS  Google Scholar 

  • Puttini S., Lekka M., Dorchies O. M., Saugy D., Incitti T., Ruegg U. T. et al. 2009 Gene-mediated restoration of normal myofiber elasticity in dystrophic muscles. Mol. Ther. 17, 19–25.

    Article  CAS  Google Scholar 

  • Ramaswamy K. S., Palmer M. L., van der Meulen J. H., Renoux A., Kostrominova T. Y., Michele D. E. et al. 2011 Lateral transmission of force is impaired in skeletal muscles of dystrophic mice and very old rats. J. Physiol. 589, 1195–1208.

    Article  CAS  Google Scholar 

  • Ramos S. V., Hughes M. C., Delfinis L. J., Bellissimo C. A. and Perry C. G. R. 2020 Mitochondrial bioenergetic dysfunction in the D2.mdx model of Duchenne muscular dystrophy is associated with microtubule disorganization in skeletal muscle. PLoS ONE 15, e0237138.

    Article  CAS  Google Scholar 

  • Ran N., Lin C., Leng L., Han G., Geng M., Wu Y. et al. 2021 MOTS-c promotes phosphorodiamidate morpholino oligomer uptake and efficacy in dystrophic mice. EMBO Mol. Med. 13, e12993.

    Article  CAS  Google Scholar 

  • Rando T. A. 2002 Oxidative stress and the pathogenesis of muscular dystrophies. Am. J. Phys. Med. Rehabil. 81, S175–S186.

  • Rennie M. J., Bohé J., Smith K., Wackerhage H. and Greenhaff P. 2006 Branched-chain amino acids as fuels and anabolic signals in human muscle. J. Nutr. 136, 264S-S268.

    Article  CAS  Google Scholar 

  • Repetto S., Bado M., Broda P., Lucania G., Masetti E., Sotgia F. et al. 1999 Increased number of Caveolae and Caveolin-3 overexpression in Duchenne muscular dystrophy. Biochem. Biophys. Res. Commun. 261, 547–550.

    Article  CAS  Google Scholar 

  • Reynolds J. G., McCalmon S. A., Donaghey J. A. and Naya F. J. 2008 Deregulated protein kinase A signaling and Myospryn expression in muscular dystrophy. J. Biol. Chem. 283, 8070–8074.

    Article  CAS  Google Scholar 

  • Rossi R., Falzarano M. S., Osman H., Armaroli A., Scotton C., Mantuano P. et al. 2021 Circadian genes as exploratory biomarkers in DMD: results from both the mdx mouse model and patients. Front. Physiol. 12, 1031.

    Article  Google Scholar 

  • Roy J., Galano J.-M., Durand T., Le Guennec J.-Y. and Chung-Yung Lee J. 2017 Physiological role of reactive oxygen species as promoters of natural defenses. FASEB J. 31, 3729–3745.

    Article  CAS  Google Scholar 

  • Rutter M. M., Wong B. L., Collins J. J., Sawnani H., Taylor M. D., Horn P. S. et al. 2020 Recombinant human insulin-like growth factor-1 therapy for 6 months improves growth but not motor function in boys with Duchenne muscular dystrophy. Muscle Nerve 61, 623–631.

    Article  CAS  Google Scholar 

  • Ryall J. G., Dell’Orso S., Derfoul A., Juan A., Zare H., Feng X. et al. 2015 The NAD(+)-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell. 16, 171–183.

    Article  CAS  Google Scholar 

  • Rybalka E., Timpani C. A., Cooke M. B., Williams A. D. and Hayes A. 2014 Defects in mitochondrial ATP synthesis in dystrophin-deficient mdx skeletal muscles may be caused by complex I insufficiency. PLoS ONE 9, e115763.

    Article  Google Scholar 

  • Saclier M., Bonfanti C., Antonini S., Angelini G., Mura G., Zanaglio F. et al. 2020 Nutritional intervention with cyanidin hinders the progression of muscular dystrophy. Cell Death Dis. 11, 127.

    Article  CAS  Google Scholar 

  • Saddoughi S. A., Gencer S., Peterson Y. K., Ward K. E., Mukhopadhyay A., Oaks J. et al. 2013 Sphingosine analogue drug FTY720 targets I2PP2A/SET and mediates lung tumour suppression via activation of PP2A-RIPK1-dependent necroptosis. EMBO Mol. Med. 5, 105–121.

    Article  CAS  Google Scholar 

  • Sanson M., Vu Hong A., Massourides E., Bourg N., Suel L., Amor F. et al. 2020 miR-379 links glucocorticoid treatment with mitochondrial response in Duchenne muscular dystrophy. Sci Rep 10, 9139.

  • Sanyal C., Pietsch N., Ramirez Rios S., Peris L., Carrier L. and Moutin M.-J. 2021 The detyrosination/re-tyrosination cycle of tubulin and its role and dysfunction in neurons and cardiomyocytes. Semin. Cell Dev. Biol., https://doi.org/10.1016/j.semcdb.2021.12.006.

    Article  Google Scholar 

  • Schiaffino S. and Mammucari C. 2011 Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4.

    Article  CAS  Google Scholar 

  • Schneider J. S., Shanmugam M., Gonzalez J. P., Lopez H., Gordan R., Fraidenraich D. et al. 2013 Increased sarcolipin expression and decreased sarco(endo)plasmic reticulum Ca2+ uptake in skeletal muscles of mouse models of Duchenne muscular dystrophy. J. Muscle Res. Cell Motil. 34, 349–356.

    Article  CAS  Google Scholar 

  • Schram G., Fournier A., Leduc H., Dahdah N., Therien J., Vanasse M. et al. 2013 All-cause mortality and cardiovascular outcomes with prophylactic steroid therapy in Duchenne muscular dystrophy. J. Am. Coll. Cardiol. 61, 948–954.

    Article  Google Scholar 

  • Sharma U., Atri S., Sharma M. C., Sarkar C. and Jagannathan N. R. 2003 Skeletal muscle metabolism in Duchenne muscular dystrophy (DMD): an in-vitro proton NMR spectroscopy study. Magn. Reson. Imaging 21, 145–153.

    Article  CAS  Google Scholar 

  • Simmonds A. I. M. and Seebacher F. 2017 Histone deacetylase activity modulates exercise-induced skeletal muscle plasticity in zebrafish (Danio rerio). Am. J. Physiol. Regul. Integr. Comp. Physiol. 313, R35–R43.

    Article  Google Scholar 

  • Srivastava N. K., Yadav R., Mukherjee S. and Sinha N. 2018 Perturbation of muscle metabolism in patients with muscular dystrophy in early or acute phase of disease: In vitro, high resolution NMR spectroscopy based analysis. Clin. Chim. Acta. 478, 171–181.

    Article  CAS  Google Scholar 

  • Srivastava N. K., Mukherjee S. and Mishra V. N. 2020 Metabolic disturbance in patients with muscular dystrophy and reflection of altered enzyme activity in dystrophic muscle: one critical view. J. Biomed. Res. Environ. Sci. 1, 393–403.

    Article  Google Scholar 

  • Stefani M., Taddei N. and Ramponi G. 1997 Insights into acylphosphatase structure and catalytic mechanism. Cell. Mol. Life Sci. 53, 141–151.

    Article  CAS  Google Scholar 

  • Stupka N., Plant D. R., Schertzer J. D., Emerson T. M., Bassel-Duby R., Olson E. N. et al. 2006 Activated calcineurin ameliorates contraction-induced injury to skeletal muscles of mdx dystrophic mice. J. Physiol. 575, 645–656.

    Article  CAS  Google Scholar 

  • Sun S., Li H., Chen J. and Qian Q. 2017 Lactic acid: no longer an inert and end-product of glycolysis. Physiology 32, 453–463.

    Article  CAS  Google Scholar 

  • Thakur S. S., Swiderski K., Ryall J. G. and Lynch G. S. 2018 Therapeutic potential of heat shock protein induction for muscular dystrophy and other muscle wasting conditions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 373, 20160528.

    Article  Google Scholar 

  • Tian H., Liu S., Ren J., Lee J. K. W., Wang R. and Chen P. 2020 Role of histone deacetylases in skeletal muscle physiology and systemic energy homeostasis: implications for metabolic diseases and therapy. Front. Physiol. 11, 949.

    Article  Google Scholar 

  • Timpani C. A., Hayes A. and Rybalka E. 2015 Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med. Hypotheses 85, 1021–1033.

    Article  CAS  Google Scholar 

  • Timpani C. A., Mamchaoui K., Butler-Browne G. and Rybalka E. 2020 Nitric oxide (NO) and Duchenne muscular dystrophy: NO way to go? Antioxidants 9, 1268.

    Article  CAS  Google Scholar 

  • Touboul D., Brunelle A., Halgand F., De La Porte S. and Laprévote O. 2005 Lipid imaging by gold cluster time-of-flight secondary ion mass spectrometry: application to Duchenne muscular dystrophy. J. Lipid Res. 46, 1388–1395.

    Article  CAS  Google Scholar 

  • Trinh B., Peletier M., Simonsen C., Plomgaard P., Karstoft K., Klarlund P. B. et al. 2021 Blocking endogenous IL-6 impairs mobilization of free fatty acids during rest and exercise in lean and obese men. Cell Rep. Med. 2, 100396.

    Article  CAS  Google Scholar 

  • Uchimura T., Asano T., Nakata T., Hotta A. and Sakurai H. 2021 A muscle fatigue-like contractile decline was recapitulated using skeletal myotubes from Duchenne muscular dystrophy patient-derived iPSCs. Cell Rep. Med. 2, 100298.

    Article  CAS  Google Scholar 

  • Vaishnavi S. N., Vlassenko A. G., Rundle M. M., Snyder A. Z., Mintun M. A. and Raichle M. E. 2010 Regional aerobic glycolysis in the human brain. Proc. Natl. Acad. Sci. USA 107, 17757–17762.

    Article  CAS  Google Scholar 

  • van Westering T., Johansson H. J., Hanson B., Coenen-Stass A., Lomonosova Y., Tanihata J. et al. 2020 Mutation-independent proteomic signatures of pathological progression in murine models of Duchenne muscular dystrophy. Mol. Cell Proteom. 19, 2047–2068.

    Article  Google Scholar 

  • Vandenburgh H. H., Shansky J., Karlisch P. and Solerssi R. L. 1993 Mechanical stimulation of skeletal muscle generates lipid-related second messengers by phospholipase activation. J. Cell. Physiol. 155, 63–71.

    Article  CAS  Google Scholar 

  • Vandoolaeghe P., Gueuning M.-A. and Rousseau G. G. 1999 M-type 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is the product of a late muscle differentiation gene. Biochem. Biophys. Res. Commun. 259, 250–254.

    Article  CAS  Google Scholar 

  • Verhaart I., Cappellari O., Tanganyika-de Winter C., L., Plomp J. J., Nnorom S., Wells K. E. et al. 2021 Simvastatin treatment does not ameliorate muscle pathophysiology in a mouse model for Duchenne muscular dystrophy. J. Neuromuscul. Dis. 8, 845–863.

    Article  Google Scholar 

  • Vieira N. M., Elvers I., Alexander M. S., Moreira Y. B., Eran A., Gomes J. P. et al. 2015 Jagged 1 rescues the Duchenne muscular dystrophy phenotype. Cell 163, 1204–1213.

    Article  CAS  Google Scholar 

  • Vieira N. M., Spinazzola J. M., Alexander M. S., Moreira Y. B., Kawahara G., Gibbs D. E. et al. 2017 Repression of phosphatidylinositol transfer protein α ameliorates the pathology of Duchenne muscular dystrophy. Proc. Natl. Acad. Sci. USA 114, 6080–6085.

    Article  CAS  Google Scholar 

  • Vila M. C., Rayavarapu S., Hogarth M. W., Van der Meulen J. H., Horn A., Defour A. et al. 2017 Mitochondria mediate cell membrane repair and contribute to Duchenne muscular dystrophy. Cell Death Differ. 24, 330–342.

    Article  CAS  Google Scholar 

  • Villa-Moruzzi E., Puntoni F. and Marin O. 1996 Activation of protein phosphatase-1 isoforms and glycogen synthase kinase-3β in muscle from mdx mice. Int. J. Biochem. 28, 13–22.

    Article  CAS  Google Scholar 

  • Voit A., Patel V., Pachon R., Shah V., Bakhutma M., Kohlbrenner E. et al. 2017 Reducing sarcolipin expression mitigates Duchenne muscular dystrophy and associated cardiomyopathy in mice. Nat. Commun. 8, 1068.

    Article  Google Scholar 

  • Wada E., Tanihata J., Iwamura A., Takeda S., Hayashi Y. K. and Matsuda R. 2017 Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice. Skelet. Muscle 7, 23.

    Article  Google Scholar 

  • Wakayama Y., Inoue M., Kojima H., Murahashi M., Shibuya S., Yamashita S. et al. 2000 Aciculin and its relation to dystrophin: immunocytochemical studies in human normal and Duchenne dystrophy quadriceps muscles. Acta Neuropathol. 99, 654–662.

    Article  CAS  Google Scholar 

  • Wang H., Marrosu E., Brayson D., Wasala N. B., Johnson E. K., Scott C. S. et al. 2021 Proteomic analysis identifies key differences in the cardiac interactomes of dystrophin and micro-dystrophin. Hum. Mol. Genet. 30, 1321–1336.

    Article  CAS  Google Scholar 

  • Weigert C., Düfer M., Simon P., Debre E., Runge H., Brodbeck K. et al. 2007 Upregulation of IL-6 mRNA by IL-6 in skeletal muscle cells: role of IL-6 mRNA stabilization and Ca2+-dependent mechanisms. Am. J. Physiol. Cell Physiol. 293, C1139–C1147.

    Article  CAS  Google Scholar 

  • Whitehead N. P., Yeung E. W., Froehner S. C. and Allen D. G. 2010 Skeletal muscle NADPH oxidase is increased and triggers stretch-induced damage in the mdx mouse. PLoS One 5, e15354.

    Article  CAS  Google Scholar 

  • Wilkinson I. V. L., Perkins K. J., Dugdale H., Moir L., Vuorinen A., Chatzopoulou M. et al. 2020 Chemical proteomics and phenotypic profiling identifies the Aryl hydrocarbon receptor as a molecular target of the Utrophin modulator Ezutromid. Angew. Chem. Int. Ed. Engl. 59, 2420–2428.

    Article  CAS  Google Scholar 

  • Wissing E. R., Boyer J. G., Kwong J. Q., Sargent M. A., Karch J., McNally E. M. et al. 2014 P38α MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Hum. Mol. Genet. 23, 5452–5463.

    Article  CAS  Google Scholar 

  • Wittlieb-Weber C. A., Knecht K. R., Villa C. R., Cunningham C., Conway J., Bock M. J. et al. 2020 Risk factors for cardiac and non-cardiac causes of death in males with Duchenne muscular dystrophy. Pediatr. Cardiol. 41, 764–771.

    Article  Google Scholar 

  • Wojtaszewski J. F. P., Nielsen P., Kiens B. and Richter E. A. 2001 Regulation of glycogen synthase Kinase-3 in human skeletal muscle: effects of food intake and bicycle exercise. Diabetes 50, 265–269.

    Article  CAS  Google Scholar 

  • Wu W., Feng J., Jiang D., Zhou X., Jiang Q., Cai M. et al. 2017 AMPK regulates lipid accumulation in skeletal muscle cells through FTO-dependent demethylation of N6-methyladenosine. Sci. Rep. 7, 41606.

    Article  CAS  Google Scholar 

  • Wuebbles R. D., Sarathy A., Kornegay J. N. and Burkin D. J. 2013 Levels of α7 integrin and laminin-α2 are increased following prednisone treatment in the mouse and GRMD dog models of Duchenne muscular dystrophy. Dis. Model Mech. 6, 1175–1184.

    CAS  Google Scholar 

  • Xia Q., Huang X., Huang J., Zheng Y., March M. E., Li J. et al. 2021 The role of autophagy in skeletal muscle diseases. Front. Physiol. 12, 291.

    Article  Google Scholar 

  • Xia R., Webb J. A., Gnall L. L., Cutler K. and Abramson J. J. 2003 Skeletal muscle sarcoplasmic reticulum contains a NADH-dependent oxidase that generates superoxide. Am. J. Physiol. Cell Physiol. 285, C215–C221.

    Article  CAS  Google Scholar 

  • Xu W. J., Wen H., Kim H. S., Ko Y. J., Dong S. M., Park I. S. et al. 2018 Observation of acetyl phosphate formation in mammalian mitochondria using real-time in-organelle NMR metabolomics. Proc. Natl. Acad. Sci. USA 115, 4152–4157.

    Article  CAS  Google Scholar 

  • Xu Y. S., Liang J. J., Wang Y., Zhao X. J., Xu L., Xu Y. et al. 2016 STAT3 undergoes acetylation-dependent mitochondrial translocation to regulate pyruvate Metabolism. Sci. Rep. 6, 39517.

    Article  CAS  Google Scholar 

  • Yazid M. D. and Hung-Chih C. 2021 Perturbation of PI3K/Akt signaling affected autophagy modulation in dystrophin-deficient myoblasts. Cell Commun. Signal. 19, 105.

    Article  Google Scholar 

  • Yoon S., Kook T. and Min H. K. 2018 PP2A negatively regulates the hypertrophic response by dephosphorylating HDAC2 S394 in the heart. Exp. Mol. Med. 50, 1–14.

    Google Scholar 

  • Yu H., Shao Y., Gao L., Zhang L., Guo K., Wu C. et al. 2012 Acetylation of sphingosine kinase 1 regulates cell growth and cell-cycle progression. Biochem. Biophys. Res. Commun. 417, 1242–1247.

    Article  CAS  Google Scholar 

  • Yue F., Song C., Huang D., Narayanan N., Qiu J., Jia Z. et al. 2021 PTEN inhibition ameliorates muscle degeneration and improves muscle function in a mouse model of Duchenne muscular dystrophy. Mol. Ther. 29, 132–148.

    Article  CAS  Google Scholar 

  • Zhang D., Tang Z., Huang H., Zhou G., Cui C., Weng Y. et al. 2019 Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580.

    Article  CAS  Google Scholar 

  • Zhang L., Pan J., Dong Y., Tweardy D. J., Dong Y., Garibotto G. et al. 2013 Stat3 activation links a C/EBPδ to myostatin pathway to stimulate loss of muscle mass. Cell Metab. 18, 368–379.

    Article  CAS  Google Scholar 

  • Zhu X., Hadhazy M., Groh M. E., Wheeler M. T., Wollmann R. and McNally E. M. 2001 Overexpression of γ-sarcoglycan induces severe muscular dystrophy: implications for the regulation of sarcoglycan assembly. J. Biol. Chem. 276, 21785–21790.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all researchers working on DMD and apologize to those whose work could not be cited due to space limitations or ignorance. A special thanks to Dr Isha Desai, Dr Saroj Jawkar and Amartya Mukherjee for endless discussion around the hypothesis and manuscript editing. Dr Somit Dutta, for his help with the figures. We also would like to thank the reviewer/s for their critical comments and suggestions. This review is part of a project funded by DST (SR/WOS-A/LS-273/2017) to VN and DST-SERB grant to UN (EMR/2016/004563).

Author information

Authors and Affiliations

Authors

Contributions

VN, SB and UN conceived the idea, and VN wrote the initial draft with inputs from UN. All authors have read and agreed to the manuscript submitted.

Corresponding author

Correspondence to Upendra Nongthomba.

Additional information

Corresponding editor: Durgadas P. Kasbekar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesari, V., Balakrishnan, S. & Nongthomba, U. Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres?. J Genet 102, 13 (2023). https://doi.org/10.1007/s12041-022-01410-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-022-01410-w

Keywords

Navigation