Skip to main content
Log in

Analysis of Dual-mode Resonators from Transmission Line Segments

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Three groups of resonance equations for various resonators on transmission lines (TL) with lumped elements are proposed. They are based on a two-port network parameters. Using these equations, it is established that a third of all resonant frequencies in the known dual-mode stub resonators analyzed using even and odd modes, were not previously taken into account. The proposed equations made it possible to design two new dual-mode resonators from TL segments with all short-circuited ends, which are practically useful. It is shown that the widely used method of even-odd modes cannot be used to describe the properties of new resonators. In the same time, these proposed resonance equations describe new properties of some dual-mode resonators. In particular, dual-mode resonators with a quarter-wave stub, in addition to dual-mode oscillations, also have single-mode oscillations. These two types of oscillations alternate with each other. In contrast, only dual-mode oscillations exist in short-stub resonators. Theoretical results are confirmed by EM simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. D. Psychogiou, R. Gomez-Garcia, D. Peroulis, "RF wide-band bandpass filter with dynamic in-band multi-interference suppression capability," IEEE Trans. Circuits Syst. II Express Briefs, v.65, n.7, p.898 (2018). DOI: https://doi.org/10.1109/TCSII.2017.2726145.

    Article  Google Scholar 

  2. W. Feng, X. Gao, W. Che, W. Yang, Q. Xue, "High selectivity wideband balanced filters with multiple transmission zeros," IEEE Trans. Circuits Syst. II Express Briefs, v.64, n.10, p.1182 (2017). DOI: https://doi.org/10.1109/TCSII.2015.2482398.

    Article  Google Scholar 

  3. R. Gomez-Garcia, R. Loeches-Sanchez, D. Psychogiou, D. Peroulis, "Multi-stub-loaded differential-mode planar multiband bandpass filters," IEEE Trans. Circuits Syst. II Express Briefs, v.65, n.3, p.271 (2018). DOI: https://doi.org/10.1109/TCSII.2017.2688336.

    Article  Google Scholar 

  4. A. Zakharov, S. Rozenko, M. Ilchenko, "Varactor-tuned microstrip bandpass filter with loop hairpin and combline resonators," IEEE Trans. Circuits Syst. II Express Briefs, v.66, n.6, p.953 (2019). DOI: https://doi.org/10.1109/TCSII.2018.2873227.

    Article  Google Scholar 

  5. A. Zakharov, M. Ilchenko, "Circuit function characterizing tunability of resonators," IEEE Trans. Circuits Syst. I Regul. Pap., v.67, n.1, p.98 (2020). DOI: https://doi.org/10.1109/TCSI.2019.2940066.

    Article  Google Scholar 

  6. A. Zakharov, M. Ilchenko, "Unloaded quality factor of transmission line resonators with capacitors," IEEE Trans. Circuits Syst. I Regul. Pap., v.67, n.7, p.2204 (2020). DOI: https://doi.org/10.1109/TCSI.2020.2971112.

    Article  Google Scholar 

  7. M. Yuceer, "A reconfigurable microwave combline filter," IEEE Trans. Circuits Syst. II Express Briefs, v.63, n.1, p.84 (2016). DOI: https://doi.org/10.1109/TCSII.2015.2504010.

    Article  Google Scholar 

  8. W.-J. Zhou, J.-X. Chen, "High-selectivity tunable balanced bandpass filter with constant absolute bandwidth," IEEE Trans. Circuits Syst. II Express Briefs, v.64, n.8, p.917 (2017). DOI: https://doi.org/10.1109/TCSII.2016.2621120.

    Article  Google Scholar 

  9. G. Megla, Dezimeterwellentechnik: theorie und technik der dezimeterschaltungen (Fachbuchverlag, Leipzig, 1955).

    Google Scholar 

  10. A. Zakharov, M. Ilchenko, "Coupling coefficients between resonators in stripline combline and pseudocombline bandpass filters," IEEE Trans. Microw. Theory Tech., v.68, n.7, p.2679 (2020). DOI: https://doi.org/10.1109/TMTT.2020.2988866.

    Article  Google Scholar 

  11. A. Zakharov, S. Rozenko, S. Litvintsev, M. Ilchenko, "Trisection bandpass filter with mixed cross-coupling and different paths for signal propagation," IEEE Microw. Wirel. Components Lett., v.30, n.1, p.12 (2020). DOI: https://doi.org/10.1109/LMWC.2019.2957207.

    Article  Google Scholar 

  12. S. C. Lin, Y. S. Lin, C. H. Chen, "Extended-stopband bandpass filter using both half- and quarter-wavelength resonators," IEEE Microw. Wirel. Components Lett., v.16, n.1, p.43 (2006). DOI: https://doi.org/10.1109/LMWC.2005.860014.

    Article  Google Scholar 

  13. J. T. Kuo, E. Shih, "Microstrip stepped impedance resonator bandpass filter with an extended optimal rejection bandwidth," IEEE Trans. Microw. Theory Tech., v.51, n.5, p.1554 (2003). DOI: https://doi.org/10.1109/TMTT.2003.810138.

    Article  Google Scholar 

  14. A. Zakharov, "Parametric and structural-parametric synthesis of nonuniform transmission line resonators," IEEE Trans. Circuits Syst. I Regul. Pap., v.68, n.3, p.1055 (2021). DOI: https://doi.org/10.1109/TCSI.2020.3044925.

    Article  Google Scholar 

  15. A. Zakharov, S. Rozenko, L. Pinchuk, S. Litvintsev, "Microstrip quazi-elliptic bandpass filter with two pairs of antiparallel mixed-coupled SIRs," IEEE Microw. Wirel. Components Lett., v.31, n.5, p.433 (2021). DOI: https://doi.org/10.1109/LMWC.2021.3065394.

    Article  Google Scholar 

  16. M. Makimoto, S. Yamashita, "Compact bandpass filters using stepped impedance resonators," Proc. IEEE, v.67, n.1, p.16 (1979). DOI: https://doi.org/10.1109/PROC.1979.11196.

    Article  Google Scholar 

  17. M. Makimoto, S. Yamashita, "Bandpass filters using parallel coupled stripline stepped impedance resonators," IEEE Trans. Microw. Theory Tech., v.28, n.12, p.1413 (1980). DOI: https://doi.org/10.1109/TMTT.1980.1130258.

    Article  Google Scholar 

  18. A. Zakharov, S. Rozenko, S. Litvintsev, M. Ilchenko, "Hairpin resonators in varactor-tuned microstrip bandpass filters," IEEE Trans. Circuits Syst. II Express Briefs, v.67, n.10, p.1874 (2020). DOI: https://doi.org/10.1109/TCSII.2019.2953247.

    Article  Google Scholar 

  19. A. Zakharov, "Transmission zeros of trisection and quadruplet bandpass filters with mixed cross coupling," IEEE Trans. Microw. Theory Tech., v.69, n.1, p.89 (2021). DOI: https://doi.org/10.1109/TMTT.2020.3034663.

    Article  Google Scholar 

  20. L. Gao, T.-W. Lin, G. M. Rebeiz, "Design of tunable multi-pole multi-zero bandpass filters and diplexer with high selectivity and isolation," IEEE Trans. Circuits Syst. I Regul. Pap., v.66, n.10, p.3831 (2019). DOI: https://doi.org/10.1109/TCSI.2019.2914170.

    Article  Google Scholar 

  21. A. Zakharov, S. Litvintsev, M. Ilchenko, "Transmission line tunable resonators with intersecting resonance regions," IEEE Trans. Circuits Syst. II Express Briefs, v.67, n.4, p.660 (2020). DOI: https://doi.org/10.1109/TCSII.2019.2922429.

    Article  Google Scholar 

  22. I. Wolff, "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electron. Lett., v.8, n.12, p.302 (1972). DOI: https://doi.org/10.1049/el:19720223.

    Article  Google Scholar 

  23. M. Makimoto, M. Sagawa, "Varactor tuned bandpass filters using microstrip-line ring resonators," in MTT-S International Microwave Symposium Digest (MTT005, 1986). DOI: https://doi.org/10.1109/MWSYM.1986.1132206.

    Chapter  Google Scholar 

  24. H. Yabuki, M. Sagawa, M. Matsuo, M. Makimoto, "Stripline dual-mode ring resonators and their application to microwave devices," IEEE Trans. Microw. Theory Tech., v.44, n.5, p.723 (1996). DOI: https://doi.org/10.1109/22.493926.

    Article  Google Scholar 

  25. M.-F. Lei, H. Wang, "An analysis of miniaturized dual-mode bandpass filter structure using shunt-capacitance perturbation," IEEE Trans. Microw. Theory Tech., v.53, n.3, p.861 (2005). DOI: https://doi.org/10.1109/TMTT.2004.842504.

    Article  Google Scholar 

  26. H.-J. Tsai, N.-W. Chen, S.-K. Jeng, "Center frequency and bandwidth controllable microstrip bandpass filter design using loop-shaped dual-mode resonator," IEEE Trans. Microw. Theory Tech., v.61, n.10, p.3590 (2013). DOI: https://doi.org/10.1109/TMTT.2013.2280129.

    Article  Google Scholar 

  27. C.-H. Wang, Y.-S. Lin, C. H. Chen, "Novel inductance-incorporated microstrip coupled-line bandpass filters with two attenuation poles," in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535) (IEEE, 2004). DOI: https://doi.org/10.1109/MWSYM.2004.1338999.

    Chapter  Google Scholar 

  28. C.-H. Wu, Y.-S. Lin, C.-H. Wang, C. H. Chen, "Novel microstrip coupled-line bandpass filters with shortened coupled sections for stopband extension," IEEE Trans. Microw. Theory Tech., v.54, n.2, p.540 (2006). DOI: https://doi.org/10.1109/TMTT.2005.862710.

    Article  Google Scholar 

  29. R.-J. Mao, X.-H. Tang, F. Xiao, "Novel compact quarter-wavelength resonator filter using lumped coupling elements," IEEE Microw. Wirel. Components Lett., v.17, n.2, p.112 (2007). DOI: https://doi.org/10.1109/LMWC.2006.890332.

    Article  Google Scholar 

  30. L. Athukorala, D. Budimir, "Compact dual-mode open loop microstrip resonators and filters," IEEE Microw. Wirel. Components Lett., v.19, n.11, p.698 (2009). DOI: https://doi.org/10.1109/LMWC.2009.2032003.

    Article  Google Scholar 

  31. J.-S. Hong, H. Shaman, Y.-H. Chun, "Dual-mode microstrip open-loop resonators and filters," IEEE Trans. Microw. Theory Tech., v.55, n.8, p.1764 (2007). DOI: https://doi.org/10.1109/TMTT.2007.901592.

    Article  Google Scholar 

  32. M.-S. Chung, I.-S. Kim, S.-W. Yun, "Varactor-tuned hairpin bandpass filter with an attenuation pole," in 2005 Asia-Pacific Microwave Conference Proceedings (IEEE, Washington, 2005). DOI: https://doi.org/10.1109/APMC.2005.1606748.

    Chapter  Google Scholar 

  33. Y.-H. Chun, J.-S. Hong, "Electronically reconfigurable dual-mode microstrip open-loop resonator filter," IEEE Microw. Wirel. Components Lett., v.18, n.7, p.449 (2008). DOI: https://doi.org/10.1109/LMWC.2008.924922.

    Article  Google Scholar 

  34. W. Tang, J.-S. Hong, "Varactor-tuned dual-mode bandpass filters," IEEE Trans. Microw. Theory Tech., v.58, n.8, p.2213 (2010). DOI: https://doi.org/10.1109/TMTT.2010.2052958.

    Article  Google Scholar 

  35. H.-J. Tsai, B.-C. Huang, N.-W. Chen, S.-K. Jeng, "A reconfigurable bandpass filter based on a varactor-perturbed, T-shaped dual-mode resonator," IEEE Microw. Wirel. Components Lett., v.24, n.5, p.297 (2014). DOI: https://doi.org/10.1109/LMWC.2014.2306893.

    Article  Google Scholar 

  36. D. Lu, X. Tang, N. S. Barker, M. Li, T. Yan, "Synthesis-applied highly selective tunable dual-mode BPF with element-variable coupling matrix," IEEE Trans. Microw. Theory Tech., v.66, n.4, p.1804 (2018). DOI: https://doi.org/10.1109/TMTT.2017.2783376.

    Article  Google Scholar 

  37. E. A. Guillemin, Synthesis of Passive Networks: Theory and Methods Appropriate to the Realization and Approximation Problems (Wiley, New York, 1959).

    Google Scholar 

  38. G. L. Matthaei, L. Young, E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures (Artech House Books, New York, 1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii N. Litvintsev.

Ethics declarations

ADDITIONAL INFORMATION

S. N. Litvintsev and A. V. Zakharov

The authors declare that they have no conflicts of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347022040033 with DOI: https://doi.org/10.20535/S0021347022040033

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 4, pp. 222-237, April, 2022 https://doi.org/10.20535/S0021347022040033 .

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litvintsev, S.N., Zakharov, A.V. Analysis of Dual-mode Resonators from Transmission Line Segments. Radioelectron.Commun.Syst. 65, 186–199 (2022). https://doi.org/10.3103/S0735272722040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272722040033

Navigation