Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) January 13, 2023

Magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 – intergrowth variants with CsCl and AlB2 related slabs

  • Maximilian Kai Reimann and Rainer Pöttgen EMAIL logo

Abstract

The magnesium-rich intermetallic compounds Gd5Cu5Mg13 and Tb5Cu5Mg13 were obtained from direct reactions of the elements (induction melting) in sealed tantalum ampoules. Both compounds crystallize with the orthorhombic Y5Cu5Mg13 type structure, space group Cmcm and Z = 4. The polycrystalline samples were characterized by powder X-ray diffraction. The structure of the gadolinium compound was refined from single crystal X-ray diffraction data: a = 414.78(2), b = 1921.87(12), c = 2573.89(16) pm, wR2 = 0.0492, 1611 F2 values and 77 variables. Refinement of the occupancy parameters revealed a small degree of Gd/Mg mixing for the Gd3 site, leading to the composition Gd4.93(1)Cu5Mg13.07(1) for the studied crystal. The Gd5Cu5Mg13 structure contains slabs of equiatomic GdCuMg, which are embedded in a magnesium matrix. From a geometrical point of view, one can describe the Gd5Cu5Mg13 and Tb5Cu5Mg13 structures as intergrowth variants of distorted W/CsCl and AlB2 related slabs. The most remarkable crystal chemical feature concerns the bcc like magnesium slabs with short Mg–Mg distances ranging from 300 to 342 pm. Temperature dependent magnetic susceptibility measurements show Curie-Weiss paramagnetism for Tb5Cu5Mg13 (10.5(1) μ B Tb atom−1 and Θ P = −11.6(1) K). Antiferromagnetic ordering was detected below the Néel temperatures of T N = 30.5(3) K.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgments

We thank Dipl.-Ing. J. Kösters for the intensity data collections and M. Sc. C. Paulsen for the EDX analyses.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Search in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

3. Kersting, M., Niehaus, O., Hoffmann, R.-D., Rodewald, U. C., Pöttgen, R. Z. Kristallogr. 2014, 229, 285–294; https://doi.org/10.1515/zkri-2013-1717.Search in Google Scholar

4. Ourane, B., Gaudin, E., Zouari, R., Couillaud, S., Bobet, J.-L. Inorg. Chem. 2013, 52, 13289–13291; https://doi.org/10.1021/ic401911g.Search in Google Scholar PubMed

5. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Solid State Sci. 2009, 11, 801–811; https://doi.org/10.1016/j.solidstatesciences.2008.12.006.Search in Google Scholar

6. Linsinger, S., Eul, M., Rodewald, U. C., Pöttgen, R. Z. Naturforsch. 2010, 65b, 1185–1190; https://doi.org/10.1515/znb-2010-1002.Search in Google Scholar

7. Linsinger, S., Hoffmann, R.-D., Eul, M., Pöttgen, R. Z. Naturforsch. 2012, 67b, 219–225; https://doi.org/10.1515/znb-2012-0307.Search in Google Scholar

8. Li, Q., Luo, Q., Gu, Q.-F. J. Mater. Chem. 2017, 5, 3848–3864; https://doi.org/10.1039/c6ta10090b.Search in Google Scholar

9. Al Asmar, E., Tencé, S., Bobet, J.-L., Ourane, B., Nakhl, M., Zakhour, M., Gaudin, E. Inorg. Chem. 2018, 57, 14152–14158; https://doi.org/10.1021/acs.inorgchem.8b02007.Search in Google Scholar PubMed

10. Egami, M., Abe, E. Scripta Mater. 2015, 98, 64–67; https://doi.org/10.1016/j.scriptamat.2014.11.013.Search in Google Scholar

11. Kishida, K., Nagai, K., Matsumoto, A., Yasuhara, A., Inui, H. Acta Mater. 2015, 99, 228–239; https://doi.org/10.1016/j.actamat.2015.08.004.Search in Google Scholar

12. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

13. Parthé, E., Chabot, B. A., Cenzual, K. Chimia 1985, 39, 164–174.Search in Google Scholar

14. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Search in Google Scholar

15. Lukachuk, M., Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787; https://doi.org/10.1524/zkri.218.12.767.20545.Search in Google Scholar

16. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A. Intermetallics 2010, 18, 719–724; https://doi.org/10.1016/j.intermet.2009.11.012.Search in Google Scholar

17. Shtender, V. V., Pavlyuk, V. V., Dmytriv, G. S., Nitek, W., Lasocha, W., Cichowicz, G., Cyrański, M. K., Paul-Boncour, V., Zavaliy, I. Y. Z. Kristallogr. 2019, 234, 19–32; https://doi.org/10.1515/zkri-2018-2107.Search in Google Scholar

18. Solokha, P., De Negri, S., Saccone, A., Pavlyuk, V., Marciniak, B., Tedenac, J.-C. Acta Crystallogr. C 2007, 63, i13–i16; https://doi.org/10.1107/s0108270107001503.Search in Google Scholar

19. Linsinger, S., Eul, M., Ben Yahia, H., Möller, M. H., Pöttgen, R. Z. Naturforsch. 2010, 65b, 1305–1310; https://doi.org/10.1515/znb-2010-1103.Search in Google Scholar

20. Solokha, P., De Negri, S., Pavlyuk, V., Saccone, A., Marciniak, B. J. Solid State Chem. 2007, 180, 3066–3075; https://doi.org/10.1016/j.jssc.2007.09.003.Search in Google Scholar

21. De Negri, S., Solokha, P., Saccone, A., Pavlyuk, V. Intermetallics 2009, 17, 614–621; https://doi.org/10.1016/j.intermet.2009.02.001.Search in Google Scholar

22. Reimann, M. K., Kremer, R. K., Kösters, J., Pöttgen, R. Z. Naturforsch. 2023, 78b, submitted for publication.Search in Google Scholar

23. Tuncel, S., Hoffmann, R.-D., Heying, B., Chevalier, B., Pöttgen, R. Z. Anorg. Allg. Chem. 2006, 632, 2017–2020; https://doi.org/10.1002/zaac.200600113.Search in Google Scholar

24. Gorsse, S., Chevalier, B., Tuncel, S., Pöttgen, R. J. Solid State Chem. 2009, 182, 948–953; https://doi.org/10.1016/j.jssc.2009.01.027.Search in Google Scholar

25. Pöttgen, R., Gulden, T., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Search in Google Scholar

26. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Search in Google Scholar

27. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

28. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16; https://doi.org/10.1107/s0108768112051361.Search in Google Scholar

29. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Search in Google Scholar

30. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

31. OriginLab Corp. Originpro 2016G (Version 9.3.2.303), 2016.Search in Google Scholar

32. Corel Corporation. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328), 2017.Search in Google Scholar

33. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Search in Google Scholar

34. Mishra, R., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 2001, 56b, 239–244; https://doi.org/10.1515/znb-2001-0304.Search in Google Scholar

35. Stein, S., Heletta, L., Pöttgen, R. Z. Naturforsch. 2017, 72b, 511–515; https://doi.org/10.1515/znb-2017-0070.Search in Google Scholar

36. Solokha, P. G., Pavlyuk, V. V., Saccone, A., De Negri, S., Prochwicz, W., Marciniak, B., Różycka-Sokołowska, E. J. Solid State Chem. 2006, 179, 3073–3081; https://doi.org/10.1016/j.jssc.2006.05.040.Search in Google Scholar

37. Stein, S., Heletta, L., Block, T., Pöttgen, R. Z. Naturforsch. 2018, 73b, 987–997; https://doi.org/10.1515/znb-2018-0191.Search in Google Scholar

38. Kong, T., Meier, W. R., Lin, Q., Saunders, S. M., Bud’ko, S. L., Flint, R., Canfield, P. C. Phys. Rev. B 2016, 94, 144434.Search in Google Scholar

39. Krypyakevich, P. I., Markiv, V. Y., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Search in Google Scholar

40. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Metall. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar

41. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53; https://doi.org/10.1515/znb-1999-0111.Search in Google Scholar

42. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

43. Tuncel, S., Hoffmann, R.-D., Chevalier, B., Matar, S. F., Pöttgen, R. Z. Anorg. Allg. Chem. 2007, 633, 151–157; https://doi.org/10.1002/zaac.200600263.Search in Google Scholar

44. Pöttgen, R., Hoffmann, R.-D., Renger, J., Rodewald, U. C., Möller, M. H. Z. Anorg. Allg. Chem. 2000, 626, 2257–2263.10.1002/1521-3749(200011)626:11<2257::AID-ZAAC2257>3.0.CO;2-#Search in Google Scholar

45. Linsinger, S., Pöttgen, R. Z. Naturforsch. 2011, 66b, 565–569; https://doi.org/10.1515/znb-2011-0603.Search in Google Scholar

46. Kersting, M., Johnscher, M., Pöttgen, R. Z. Kristallogr. 2013, 228, 635–642; https://doi.org/10.1524/zkri.2013.1690.Search in Google Scholar

47. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

48. Szytuła, A., Leciejewicz, J. Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics; CRC Press: Boca Raton, 1994.Search in Google Scholar

Received: 2022-12-01
Accepted: 2023-01-03
Published Online: 2023-01-13
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0064/html
Scroll to top button