Skip to main content
Log in

Formation and Stability of the Crystalline Structures in Two-Mode Phase-Field Crystal Model

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The two-mode phase-field crystal (PFC) model is an extended classical PFC model which allows one to describe hexagonal and other complex lattices. In such model the order parameter is periodic in crystalline state and constant in disordered or liquid phase. The PFC model allows linking mesoscopic and microscopic spatial–temporal scales and to implement in the results of the molecular dynamics method into phase-field models. In present work the regimes of crystallization of two-dimensional structures using the two-mode PFC method was studied. A quasi-crystalline anisotropic striped phase was found, this phase qualitatively corresponds to the obtained ones in colloidal solutions. The stability of structures during phase transitions between crystals with various symmetries was investigated. A structure diagram was constructed, and the melting curve was presented. A numerical approach for the two-mode PFC model was developed and the simulations were carried out using finite-element method in direct space. The dependence of the types of crystalline structures on the control parameters was investigated. It is shown that the scale parameters q0, q1 allow one to control the lattice symmetry type, and the shift parameters r0, r1 affect on the position of the structures existence regions and the melting curve. Also the shift parameters allow one to control the formation of the quasi-crystalline structures. The stability of structures with hexagonal and quadratic symmetries was investigated. During such transitions the change in near- and far-order symmetry occurs sequentially. The possible existence of a crystal with 5-fold symmetry as an intermediate phase was figured out. The sequence of transitions from triangular through honeycomb and square lattice to the liquid phase is shown. It is shown that the transitions themselves occur through the mixed glassy phase. Proposed model and method is applicable for modeling of the transitions between three-dimensional hexagonal (HCP) and cubic (FCC/BCC) lattices in metals and alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. 
Fig. 2. 
Fig. 3. 
Fig. 4. 
Fig. 5. 
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 88, 245701 (2002). https://doi.org/10.1103/PhysRevLett.88.245701

    Article  ADS  Google Scholar 

  2. K. R. Elder and M. Grant, Phys. Rev. E 70, 51605 (2004). https://doi.org/10.1103/PhysRevE.70.051605

    Article  ADS  Google Scholar 

  3. K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant, Phys. Rev. B 75, 64107 (2007). https://doi.org/10.1103/PhysRevB.75.064107

    Article  ADS  Google Scholar 

  4. V. E. Ankudinov, P. K. Galenko, N. V. Kropotin, and M. D. Krivilev, J. Exp. Theor. Phys. 122, 298 (2016). https://doi.org/10.1134/S1063776116020011

    Article  ADS  Google Scholar 

  5. S. A. Brazovskii, J. Exp. Theor. Phys. 41, 85 (1975).

    ADS  Google Scholar 

  6. K. R. Elder, G. Rossi, P. Kanerva, F. Sanches, S.‑C. Ying, E. Granato, C. V. Achim, and T. Ala-Nissila, Phys. Rev. Lett. 108, 226102 (2012). https://doi.org/10.1103/PhysRevLett.108.226102

    Article  ADS  Google Scholar 

  7. N. Provatas, J. A. Dantzig, B. Athreya, P. Chan, P. Stefanovic, N. Goldenfeld, K. R. Elder, et al., J. Miner. Met. Mater. Soc. 59 (7), 83 (2007). https://doi.org/10.1007/s11837-007-0095-3

    Article  Google Scholar 

  8. H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. I. Tóth, G. Tegze, and L. Gránásy, Adv. Phys. 61, 665 (2012). https://doi.org/10.1080/00018732.2012.737555

    Article  ADS  Google Scholar 

  9. G. I. Tóth, G. Tegze, T. Pusztai, G. Tóth, and L. Gránásy, J. Phys.: Condens. Matter 22, 364101 (2010). https://doi.org/10.1088/0953-8984/22/36/364101

    Article  Google Scholar 

  10. 10. L. Gránásy, G. Tóth, J. A. Warren, F. Podmaniczky, G. Tegze, L. Rátkai, and T. Pusztai, Prog. Mater. Sci. 106, 100569 (2019). https://doi.org/10.1016/j.pmatsci.2019.05.002

  11. P. Galenko, D. Danilov, and V. Lebedev, Phys. Rev. E 79, 51110 (2009). https://doi.org/10.1103/PhysRevE.79.051110

    Article  ADS  MathSciNet  Google Scholar 

  12. V. Ankudinov and P. K. Galenko, J. Cryst. Growth 539, 125608 (2020). https://doi.org/10.1016/j.jcrysgro.2020.125608

    Article  Google Scholar 

  13. G. Tegze, L. Gránásy, G. I. Tóth, F. Podmaniczky, A. Jaatinen, T. Ala-Nissila, and T. Pusztai, Phys. Rev. Lett. 103, 035702 (2009). https://doi.org/10.1103/PhysRevLett.103.035702

    Article  ADS  Google Scholar 

  14. S. Tang et al., J. Cryst. Growth 334, 146 (2011). https://doi.org/10.1016/j.jcrysgro.2011.08.027

    Article  ADS  Google Scholar 

  15. A. J. Archer, D. J. Ratliff, A. M. Rucklidge, and P. Subramanian, Phys. Rev. E 100, 022140 (2019). https://doi.org/10.1103/PhysRevE.100.022140

    Article  ADS  Google Scholar 

  16. K.-A. Wu and A. Karma, Phys. Rev. B 76, 184107 (2007). https://doi.org/10.1103/PhysRevB.76.184107

    Article  ADS  Google Scholar 

  17. V. V. Lebedev and A. R. Muratov, Sov. Phys. Solid State 32, 493 (1990).

    Google Scholar 

  18. E. I. Kats, V. V. Lebedev, and A. R. Muratov, Phys. Rep. 228, 1 (1993). https://doi.org/10.1016/0370-1573(93)90119-X

    Article  ADS  Google Scholar 

  19. M. Guerdane and M. Berghoff, Phys. Rev. B 97, 144105 (2018). https://doi.org/10.1103/PhysRevB.97.144105

    Article  ADS  Google Scholar 

  20. N. Provatas and K. Elder, Phase-Field Methods in Materials Science and Engineering (Wiley-VCH, Weinheim, 2010)

    Book  Google Scholar 

  21. I. O. Starodumov, P. K. Galenko, N. V. Kropotin, and D. V. Aleksandrov, Program. Sist.: Teor. Pril. 9, 265 (2018). https://doi.org/10.25209/2079-3316-2018-9-4-265-278

    Article  Google Scholar 

  22. A. Emdadi, M. A. Zaeem, and E. Asadi, Comput. Mater. Sci. 123, 139 (2016). https://doi.org/10.1016/j.commatsci.2016.06.018

    Article  Google Scholar 

  23. E. Asadi and M. Zaeem, Comput. Mater. Sci. 105, 101 (2015). https://doi.org/10.1016/J.COMMATSCI.2015.03.051

    Article  Google Scholar 

  24. I. Starodumov, V. Ankudinov, and I. Nizovtseva, Eur. Phys. J. Spec. Top. 123 (2022). https://doi.org/10.1140/epjs/s11734-022-00518-5

  25. V. Ankudinov, K. R. Elder, and P. K. Galenko, Phys. Rev. E 102, 062802 (2020). https://doi.org/10.1103/PhysRevE.102.062802

    Article  ADS  MathSciNet  Google Scholar 

  26. X. Shuai, H. Mao, Y. Kong, and Y. Du, J. Mining Metall., Sect. B: Metall. 53, 271 (2017). https://doi.org/10.2298/JMMB170527027S

    Article  Google Scholar 

  27. C. J. O. Reichhardt, C. Reichhard, I. Martin, and A. R. Bishop, Phys. D: Nonlin. Phenom. 193, 303 (2004). https://doi.org/10.1016/j.physd.2004.01.027

    Article  ADS  Google Scholar 

  28. Y. Yang, L. Fu, C. Marcoux, J. E. S. Socolar, P. Charbonneau, and B. B. Yellen, Soft Matter 11, 2404 (2015). https://doi.org/10.1039/c5sm00009b

    Article  ADS  Google Scholar 

  29. Y. Han, Y. Shokef, A. M. Alsayed, P. Yunker, T. C. Lubensky, and A. G. Yodh, Nature (London, U.K.) 456 (7224), 898 (2008). https://doi.org/10.1038/nature07595

    Article  ADS  Google Scholar 

  30. M. E. Leunissen, H. R. Vutukuri, van and A. Blaaderen, Adv. Mater. 21, 3116 (2009). https://doi.org/10.1002/adma.200900640

    Article  Google Scholar 

  31. A. Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Phys. Rev. E 80 (3), 1 (2009). https://doi.org/10.1103/PhysRevE.80.031602

    Article  Google Scholar 

  32. V. N. Ryzhov and E. E. Tareyeva, Phys. Lett. A 75, 88 (1979). https://doi.org/10.1016/0375-9601(79)90287-1

    Article  ADS  Google Scholar 

  33. V. N. Ryzhov and E. E. Tareeva, Theor. Math. Phys. 92, 922 (1992). https://doi.org/10.1007/BF01015558

    Article  Google Scholar 

  34. T. V. Ramakrishnan and M. Yussouff, Phys. Rev. B 19, 2775 (1979). https://doi.org/10.1103/PhysRevB.19.2775

    Article  ADS  Google Scholar 

  35. S. K. Mkhonta, K. R. Elder, and Z. F. Huang, Phys. Rev. Lett. 111, 035501 (2013). https://doi.org/10.1103/PhysRevLett.111.035501

    Article  ADS  Google Scholar 

  36. F. Podmaniczky, G. I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy, J. Cryst. Growth 457, 24 (2017). https://doi.org/10.1016/j.jcrysgro.2016.06.056

    Article  ADS  Google Scholar 

  37. P. K. Galenko, F. Sanches, and K. R. Elder, Phys. D: Nonlin. Phenom. 308, 1 (2015). https://doi.org/10.1016/j.physd.2015.06.002

    Article  ADS  Google Scholar 

  38. P. K. Galenko, H. Gomez, N. V. Kropotin, and K. R. Elder, Phys. Rev. E 88, 013310 (2013). https://doi.org/10.1103/PhysRevE.88.013310

    Article  ADS  Google Scholar 

  39. P. Stefanovic, M. Haataja, and N. Provatas, Phys. Rev. Lett. 96, 225504 (2006). https://doi.org/10.1103/PhysRevLett.96.225504

    Article  ADS  Google Scholar 

  40. A. J. Archer, J. Chem. Phys. 130, 014509 (2009). https://doi.org/10.1063/1.3054633

    Article  ADS  Google Scholar 

  41. A. A. Lebedeva, V. G. Lebedev, and V. I. Lad’yanov, Khim. Fiz. Mezosk. 20, 471 (2018).

    Google Scholar 

  42. Ankudinov V, I. Starodumov, N. P. Kryuchkov, E. V. Yakovlev, S. O. Yurchenko, and P. K. Galenko, Math. Methods Appl. Sci. 44, 12185 (2021). https://doi.org/10.1002/mma.6887

    Article  ADS  MathSciNet  Google Scholar 

  43. I. S. Aranson, B. A. Malomed, L. M. Pismen, and L. S. Tsimring, Phys. Rev. E 62, R5 (2000). https://doi.org/10.1103/PhysRevE.62.R5

    Article  ADS  Google Scholar 

  44. S. van Teeffelen, R. Backofen, A. Voigt, and H. Löwen, Phys. Rev. E 79, 051404 (2009). https://doi.org/10.1103/PhysRevE.79.051404

    Article  ADS  Google Scholar 

  45. COMSOL Multiphysics, vers. 6.0 (COMSOL AB, Stock, Sweden, 2022). https://www.comsol.com.

  46. J. Berry and M. Grant, Phys. Rev. E 89, 062303 (2014). https://doi.org/10.1103/PhysRevE.89.062303

    Article  ADS  Google Scholar 

  47. W. Zhang and J. Mi, IOP Conf. Ser.: Mater. Sci. Eng. 117, 012056 (2016). https://doi.org/10.1088/1757-899X/117/1/012056

  48. T. O. E. Skinner, H. M. Martin, D. G. A. L. Aarts, and R. P. A. Dullens, Soft Matter 9, 10586 (2013). https://doi.org/10.1039/C3SM51627J

    Article  ADS  Google Scholar 

  49. I. Starodumov, V. Ankudinov, and P. Galenko, MATEC Web Conf. 129, 02035 (2017). https://doi.org/10.1051/matecconf/201712902035

Download references

Funding

This study was supported by the Russian Science Foundation, project 21-73-00263. https://rscf.ru/project/21-73-00263/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Ankudinov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankudinov, V.E. Formation and Stability of the Crystalline Structures in Two-Mode Phase-Field Crystal Model. Phys. Solid State 64, 417–424 (2022). https://doi.org/10.1134/S1063783422090013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783422090013

Keywords:

Navigation