Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective deficiency of UCP-1 and adropin may lead to different subtypes of anti-neutrophil cytoplasmic antibody-associated vasculitis

Abstract

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that is prone to respiratory and renal failures. Its major target antigens are serine protease 3 (PR3) and myeloperoxidase (MPO), but the determinants of PR3 and MPO subtypes are still unclear. Uncoupling protein-1 (UCP-1) and adropin (Adr) regulate mutually and play an important role in endothelial cell injury. In this study, adropin and UCP-1 knockout (AdrKO and UCP-1-KO) models were established on the basis of C57BL/6 J mice. The results showed that UCP-1-KO and AdrKO mice similar to AAV: significant inflammatory cell infiltration, vascular wall damage, and erythrocyte extravasation. The pathological basis of AdrKO was that endothelial cells adhered and activated neutrophils to release MPO, and the core gene was peroxisome proliferator–activated receptor gamma (PPARG). However, UCP-1-KO induced PR3 release, and the accumulation and expression of tissue factor on the vascular wall, and the core gene was peroxisome proliferator–activated receptor delta (PPARD). The present study verified that the subtypes of AAV may be genetically different diseases and it also provide novel experimental evidence for clinical differentiation of the two subtypes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism map.
Fig. 2: Differences in the inflammatory models induced by AdrKO and UCP-1-KO.
Fig. 3: Differences in pathological tissues between AdrKO and UCP-1-KO.
Fig. 4: Regulatory network between AdrKO and UCP-1-KO.

Similar content being viewed by others

Data availability

The data used to support the findings of this study are currently under embargo while the research findings are commercialized. Requests for data, [12 months] after publication of this article, will be considered by the corresponding author.

References

  1. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363:221–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakaya I, Yahata M, Takahashi S, Sasajima T, Sakuma T, Shibagaki Y, et al. Long-term outcome and efficacy of cyclophosphamide therapy in Japanese patients with ANCA-associated microscopic polyangiitis: a retrospective study. Intern Med. 2013;52:2503–9.

    Article  PubMed  Google Scholar 

  3. Zhang S, Shu X, Tian X, Chen F, Liu X, Wang G. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: a potential contributor to interstitial lung disease complications. Clin Exp Immunol. 2014;177:134–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jennette JC, Falk RJ. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol. 2014;10:463–73.

    Article  CAS  PubMed  Google Scholar 

  5. Lyons PA, Rayner TF, Trivedi S, et al. Genetically distinct subsets within ANCA-associated vasculitis. N Engl J Med. 2012;367:214–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cid MC. The search for genetic links in ANCA-associated vasculitis and its variants. N Engl J Med. 2012;367:271–3.

    Article  CAS  PubMed  Google Scholar 

  7. Knight A, Sandin S, Askling J. Risks and relative risks of Wegener’s granulomatosis among close relatives of patients with the disease. Arthritis Rheum. 2008;58:302–7.

    Article  PubMed  Google Scholar 

  8. Marchesi C, Ebrahimian T, Angulo O, Paradis P, Schiffrin EL. Endothelial nitric oxide synthase uncoupling and perivascular adipose oxidative stress and inflammation contribute to vascular dysfunction in a rodent model of metabolic syndrome. Hypertension. 2009;54:1384–92.

    Article  CAS  PubMed  Google Scholar 

  9. Monach PA, Merkel PA. Genetics of vasculitis. Curr Opin Rheumatol. 2010;22:157–63.

    Article  PubMed  Google Scholar 

  10. Gao F, Fang J, Chen F, Wang CD, Chen S, Zhang S, et al. Enho mutations causing low adropin: a possible pathomechanism of MPO-ANCA associated lung injury. EBioMedicine. 2016;9:324–35.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen S, Zeng K, Liu QC, Guo Z, Zhang S, Chen XR, et al. Adropin deficiency worsens HFD-induced metabolic defects. Cell Death Dis. 2017;8:e3008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altintas O, Kumas M, Altintas MO. Neuroprotective effect of ischemic preconditioning via modulating the expression of adropin and oxidative markers against transient cerebral ischemia in diabetic rats. Peptides. 2016;79:31–8.

    Article  CAS  PubMed  Google Scholar 

  13. Holguin F, Ramadan B, Gal AA, Roman J. Prognostic factors for hospital mortality and ICU admission in patients with ANCA-related pulmonary vasculitis. Am J Med Sci. 2008;336:321–6.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aydin S, Kuloglu T, Aydin S, Eren MN, Yilmaz M, Kalayci M, et al. Expression of adropin in rat brain, cerebellum, kidneys, heart, liver, and pancreas in streptozotocin-induced diabetes. Mol Cell Biochem. 2013;380:73–81.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell Metab. 2008;8:468–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chouchani ET, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 2016;532:112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 2007;115:909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hong J, Liu R, Chen L, Wu BW, Yu J, Gao W, et al. Conditional knockout of tissue factor pathway inhibitor 2 in vascular endothelial cells accelerates atherosclerotic plaque development in mice. Thromb Res. 2016;137:148–56.

    Article  CAS  PubMed  Google Scholar 

  19. Manoharan I, Suryawanshi A, Hong Y, Ranganathan P, Shanmugam A, Ahmad S, et al. Homeostatic PPARα signaling limits inflammatory responses to commensal microbiota in the intestine. J Immunol. 2016;196:4739–49.

    Article  CAS  PubMed  Google Scholar 

  20. Besse-Patin A, Léveillé M, Oropeza D, Nguyen BN, Prat A, Estall JL. Estrogen signals through peroxisome proliferator-activated receptor-γ coactivator 1α to reduce oxidative damage associated with diet-induced fatty liver disease. Gastroenterology. 2017;152:243–56.

    Article  CAS  PubMed  Google Scholar 

  21. Luz-Crawford P, Ipseiz N, Espinosa-Carrasco G, Caicedo A, Tejedor G, Toupet K, et al. PPARβ/δ directs the therapeutic potential of mesenchymal stem cells in arthritis. Ann Rheum Dis. 2016;75:2166–74.

    Article  CAS  PubMed  Google Scholar 

  22. Ratziu V, Harrison SA, Francque S, Bedossa P, Lehert P, Serfaty L, et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147–59.e5.

    Article  CAS  PubMed  Google Scholar 

  23. Kang K, Reilly SM, Karabacak V, Gangl MR, Fitzgerald K, Hatano B, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab. 2008;7:485–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen M, Kallenberg CG. ANCA-associated vasculitides—advances in pathogenesis and treatment. Nat Rev Rheumatol. 2010;6:653–64.

    Article  CAS  PubMed  Google Scholar 

  25. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med. 2002;8:1249–56.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar AP, Piedrafita FJ, Reynolds WF. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the -463GA promoter polymorphism. J Biol Chem. 2004;279:8300–15.

    Article  CAS  PubMed  Google Scholar 

  27. Shirai T, Hilhorst M, Harrison DG, Goronzy JJ, Weyand CM. Macrophages in vascular inflammation—from atherosclerosis to vasculitis. Autoimmunity. 2015;48:139–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122:S185–92.

    Article  CAS  PubMed  Google Scholar 

  29. Falk RJ, Terrell RS, Charles LA, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA. 1990;87:4115–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams JW, Elvington A, Ivanov S, Kessler S, Luehmann H, Baba O, et al. Thermoneutrality but Not UCP1 deficiency suppresses monocyte mobilization into blood. Circ Res. 2017;121:662–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, et al. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species-specific differences in UCP-1 regulation. Cell Metab. 2016;24:130–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV, et al. IGF1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep. 2017;19:225–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moyes KM, Graugnard DE, Khan MJ, Mukesh M, Loor JJ. Postpartal immunometabolic gene network expression and function in blood neutrophils are altered in response to prepartal energy intake and postpartal intramammary inflammatory challenge. J Dairy Sci. 2014;97:2165–77.

    Article  CAS  PubMed  Google Scholar 

  34. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009;15:623–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. del Rincón I, Polak JF, O’Leary DH, Battafarano DF, Erikson JM, Restrepo JF, et al. Systemic inflammation and cardiovascular risk factors predict rapid progression of atherosclerosis in rheumatoid arthritis. Ann Rheum Dis. 2015;74:1118–23.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by Fujian Natural Science Foundation (No. 2021J02036). These funding sources played key supportive role for sample collection, molecular analysis of patient samples, bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Contributions

Q-CL planned the project. Q-CL, and Q-QC conceived of and designed the study. Q-CL, X-TL, Y-JG, Y-FL and X-XG performed the sample collection. Y-ZL, Q-CL, and Y-FL performed the expression analysis. Q-CL, and Y-FL analyzed the data and drafted the manuscript. All authors reviewed the manuscript and approved the final version.

Corresponding authors

Correspondence to Yunfeng Lin or Qicai Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval and consent to participate

The data collection scheme and research carried out were approved by the Medical ethics committee of the First Affiliated Hospital of Fujian Medical University. The protocol was approved by the Medical ethics committee of the First Affiliated Hospital of Fujian Medical University.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Li, Y., Guo, X. et al. Selective deficiency of UCP-1 and adropin may lead to different subtypes of anti-neutrophil cytoplasmic antibody-associated vasculitis. Genes Immun 24, 39–45 (2023). https://doi.org/10.1038/s41435-023-00195-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-023-00195-x

Search

Quick links