Skip to main content
Log in

Isometric group actions with vanishing rate of escape on \(\textrm{CAT}(0)\) spaces

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

Let \(Y=(Y,d)\) be a \(\textrm{CAT}(0)\) space which is either proper or of finite telescopic dimension, and \(\Gamma \) a countable group equipped with a symmetric and nondegenerate probability measure \(\mu \). Suppose that \(\Gamma \) acts on Y via a homomorphism \(\rho :\Gamma \rightarrow \textrm{Isom}({Y})\), where \(\textrm{Isom}({Y})\) denotes the isometry group of Y, and that the action given by \(\rho \) has finite second moment with respect to \(\mu \). We show that if \(\rho (\Gamma )\) does not fix a point in the boundary at infinity \(\partial Y\) of Y and the rate of escape \(l_{\rho }(\Gamma )=l_{\rho }(\Gamma ,\mu )\) associated to an action given by \(\rho \) vanishes, then there exists a flat subspace in Y that is left invariant under the action of \(\rho (\Gamma )\). Note that if the rate of escape does not vanish, then we know that there exists an equivariant map from the Poisson boundary of \((\Gamma ,\mu )\) into the boundary at infinity of Y by a result of Karlsson and Margulis. The key ingredient of the proof is \(\mu \)-harmonic functions on \(\Gamma \) and \(\mu \)-harmonic maps from \(\Gamma \) into Y. We prove a result similar to the above for an isometric action of \(\Gamma \) on a locally finite-dimensional \(\textrm{CAT}(0)\) space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. U. Bader, B. Duchesne, and J. Lécureux, Furstenberg maps for \({\rm CAT}(0)\) targets of finite telescopic dimension, Ergodic Theory and Dynamical Systems, 36 (2016), 1723–1742.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Balser and A. Lytchak, Centers of convex subsetes of buildings, Ann. Global Anal. Geom. 28 (2005), 201–209.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Bekka, P. de la Harpe, and A. Valette, Kazhdan’s Property (T), Cambridge Univ. Press, (2008).

    Book  MATH  Google Scholar 

  4. Y. Benoist and J.-F. Quint, Random Walks on Reduced Groups, Springer, (2016).

  5. M. R. Bridson and A. Haefliger, Metric Spaces of Non-positive Curvature, Springer, (1999).

  6. P.-E. Caprace and A. Lytchack, At infinity of finite-dimensional \({{\rm CAT}}(0)\) spaces. Math. Ann., 346 (2010), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  7. P.-E. Caprace and A. Lytchack, Erratum to ‘At infinity of finite-dimensional \({{\rm CAT}}(0)\) spaces’, arXiv:0810.2895v2

  8. I. Choi, Limit laws on outer space, Teichmüller space and \({{\rm CAT}}(0)\) spaces, arXiv:2207.06597.

  9. K. Corlette, Archimedian superrigidity and hyperbolic geometry, Ann. Math. 135 (1992), 165–182.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Eells and B. Fuglede, Harmonic Maps between Riemannian Polyhedra, Cambridge University Press, (2001).

  11. T. Fernós, J. Lécureux, and F. Mathéus, Random walks and boundaries of \({{\rm CAT}}(0)\) cubical complexes, Comment. Math. Helv., 93 (2018), 291–333.

    Article  MathSciNet  MATH  Google Scholar 

  12. B. Forghani, Asymptotic entropy of transformed random walks, Ergod. Th. and Dynam. Sys., 37 (2017), 1480–1491.

    Article  MathSciNet  MATH  Google Scholar 

  13. H. Fustenberg, Random walks and discrete subgroups of Lie groups, in Advances in Probability Theory and Related Topics, Marcel Dekker, New York, 1971, 1–63.

    Google Scholar 

  14. F. Gautero and F. Mathéus, Poisson boundary of groups acting on \(\mathbb{R}\)-trees, Israel J. Math., 191 (2012), 585–646.

  15. M. Gromov, Random walk in random groups, GAFA 13 (2003), 73–148.

    MathSciNet  MATH  Google Scholar 

  16. M. Gromov and R. Schoen, Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one, Publ. Math. IHES 76 (1992), 165–246.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Ishihara, A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229.

    MathSciNet  MATH  Google Scholar 

  18. H. Izeki, Fixed-point property of random quotients by plain words, Groups Geom. Dyn., 8 (2014), 1101–1140

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Izeki, T. Kondo, and S. Nayatani, Fixed-point property of random groups, Annals of Global Analysis and Geom., 35 (2009), 363–379.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Izeki, T. Kondo, and S. Nayatani,\(N\)-step energy of maps and fixed-point property of random groups, Groups Geom. Dyn. 6 (2012), 701–736.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Izeki and S. Nayatani, Combinatorial harmonic maps and discrete-group actions on Hadamard Spaces, Geom. Dedicata 114 (2005), 147–188.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Jost, Nonpositive Curvature: Geometric and Analytic Aspects, Birkhäuser, (1997).

  23. J. Jost and S.-T. Yau, Harmonic maps and group representations, in Differential Geometry and Minimal Submanifolds (B. Lawson and K. Tenenblat, eds.), Longman Scientific, (1991), 241–259.

  24. J. Jost and S.-T. Yau, Harmonic maps and superrigidity, Differential geometry: partial differential equations on manifolds, Proc. Symp. Pure Math. 54-I (1993), 245–280.

  25. V. A. Kaimanovich, The Poisson formula for groups with hyperbolic properties, Ann. of Math., 152 (2000), 659–592.

    Article  MathSciNet  MATH  Google Scholar 

  26. V. A. Kaimanovich, and H. Masur, The Poisson boundary of the mapping class group, Invent. Math., 125 (1996), 221–264.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Karlsson and G. Margulis, A multiplicative ergodic theorem and nonpositively curved spaces, Commun. Math. Phys., 208 (1999), 107–123.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Kleiner, The local structure of length spaces with curvature bounded above, Math. Z., 231 (1999), 409–456.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. J. Korevaar and R. M. Schoen, Sovolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom., 1 (1993), 561–659.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. J. Korevaar and R. M. Schoen, Global existence theorems for harmonic maps to non-locally compact spaces, Comm. Anal. Geom., 5 (1997), 333–387.

    Article  MathSciNet  MATH  Google Scholar 

  31. F. Labourie, Existence d’applications harmoniques tordues á valeurs dan les variétés á courbure négative, Proc. Amer. Math. Soc., 111 (1991), 877-882.

    MathSciNet  MATH  Google Scholar 

  32. J. Maher and G. Tiozzo, Random walks on weakly hyperbolic groups, J. Reine Angew. Math., 742 (2018), 187–239.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Margulis, Discrete groups of motions of manifolds of nonpositive curvature, Amer. Math. Soc. Transl., 190 (1977), 33–45.

    MATH  Google Scholar 

  34. G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berline, (1991).

    Book  MATH  Google Scholar 

  35. N. Mok, Y.-T. Siu and S.-K. Yeung, Geometric superrigidity, Invent. Math. 113 (1993), 57–83.

    Article  MathSciNet  MATH  Google Scholar 

  36. N. Monod, Superrigidity for irreducible lattices and geometric splitting, J. Amer. Math. Soc., 19 (2006), 781–814.

    Article  MathSciNet  MATH  Google Scholar 

  37. K.-T. Sturm, Nonlinear martingale theory for process with values in metric spaces of nonpositive curvature, Ann. Probab., 30 (2002), 1195–1222.

    Article  MathSciNet  MATH  Google Scholar 

  38. M.-T. Wang, A fixed point theorem of discrete group actions on Riemannian manifolds, J. Diff. Geom. 50 (1998), 249–267.

    MathSciNet  MATH  Google Scholar 

  39. W. Woess, Random Walk on Infinite Graphs and Groups, Cambridge University Press, (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Izeki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS Grants-in-Aid for Scientific Research Grant Number JP20H01802.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izeki, H. Isometric group actions with vanishing rate of escape on \(\textrm{CAT}(0)\) spaces. Geom. Funct. Anal. 33, 170–244 (2023). https://doi.org/10.1007/s00039-023-00628-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-023-00628-9

Keywords and phrases

Mathematics Subject Classification

Navigation