Skip to main content
Log in

Gangliosides as Siglec ligands

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The structure of a sialoglycan can be translated into to a biological response when it binds to a specific endogenous lectin. Among endogenous sialic acid-binding lectins in humans are those comprising the 15-member Siglec family, most of which are expressed on overlapping sets of immune cells. Endogenous Siglec ligands are sialoglycolipids (gangliosides) and/or sialoglycoproteins, on cell surfaces or in the extracellular milieu, that bind to and initiate signaling by cell surface Siglecs. In the nervous system, where gangliosides are the predominant sialoglycans, Siglec-4 (myelin-associated glycoprotein) on myelinating cells binds to gangliosides GD1a and GT1b on nerve cell axons to ensure stable and productive axon-myelin interactions. In the immune system, Siglec-7 on natural killer cells binds to gangliosides GD3 and GD2 to inhibit immune signaling. Expression of GD3 and GD2 on cancer cells can lead to tumor immune evasion. Siglec-1 (sialoadhesin, CD169) on macrophages binds to gangliosides on tumors and enveloped viruses. This may enhance antigen presentation in some cases, or increase viral distribution in others. Several other Siglecs bind to gangliosides in vitro, the biological significance of which has yet to be fully established. Gangliosides, which are found on all human cells and tissues in cell-specific distributions, are functional Siglec ligands with varied roles driving Siglec-mediated signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Varki, A., Schnaar, R.L., Schauer, R.: Sialic acids and other nonulosonic acids. In: Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., Schnaar, R.L., Seeberger, P.H. (eds.) Essentials of glycobiology, 3rd edn., pp. 179–195. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (2017). https://www.ncbi.nlm.nih.gov/books/NBK579918/

    Google Scholar 

  2. Lundblad, A.: Gunnar Blix and his discovery of sialic acids. Fascinating molecules in glycobiology. Ups J. Med. Sci 120(2), 104–112 (2015). https://doi.org/10.3109/03009734.2015.1027429

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schauer, R., Kamerling, J.P.: Exploration of the sialic acid world. Sialic Acids, Pt I: Historical Background and Development, and Chemical Synthesis 75, 1–213 (2018). https://doi.org/10.1016/bs.accb.2018.09.001

  4. Blix, G.: Über die Kohlenhydratgruppen des Submaxillarismucins [Concerning the carbohydrate groups of submaxillary mucin]. Hoppe Seylers Z. Physiol. Chem 240, 43–54 (1936). https://doi.org/10.1515/bchm2.1936.240.1-2.43

    Article  CAS  Google Scholar 

  5. Gottschalk, A., Lind, P.E.: Product of interaction between influenza virus enzyme and ovomucin. Nature 164(4162), 232 (1949). https://doi.org/10.1038/164232a0

    Article  CAS  PubMed  Google Scholar 

  6. von Itzstein, M.: The war against influenza: discovery and development of sialidase inhibitors. Nat. Rev. Drug Discov 6(12), 967–974 (2007). https://doi.org/10.1038/nrd2400

    Article  Google Scholar 

  7. Baum, L.G., Paulson, J.C.: Sialyloligosaccharides of the respiratory epithelium in the selection of human influenza virus receptor specificity. Acta Histochem. Suppl 40, 35–38 (1990)

    CAS  PubMed  Google Scholar 

  8. Kelm, S., Schauer, R.: Sialic acids in molecular and cellular interactions. Int. Rev. Cytol 175, 137–240 (1997). https://doi.org/10.1016/s0074-7696(08)62127-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kelm, S., Pelz, A., Schauer, R., Filbin, M.T., Song, T., de Bellard, M.E., Schnaar, R.L., Mahoney, J.A., Hartnell, A., Bradfield, P., Crocker, P.R.: Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol 4, 965–972 (1994). https://doi.org/10.1016/S0960-9822(00)00220-7

    Article  CAS  PubMed  Google Scholar 

  10. Crocker, P.R., Clark, E.A., Filbin, M., Gordon, S., Jones, Y., Kehrl, J.H., Kelm, S., Le Douarin, N., Powell, L., Roder, J., Schnaar, R.L., Sgroi, D.C., Stamenkovic, K., Schauer, R., Schachner, M., van den Berg, T.K., van der Merwe, P.A., Watt, S.M., Varki, A.: Siglecs: a family of sialic-acid binding lectins. Glycobiology 8(2), v (1998). https://doi.org/10.1093/oxfordjournals.glycob.a018832

  11. Duan, S., Paulson, J.C.: Siglecs as immune cell checkpoints in disease. Annu. Rev. Immunol 38, 365–395 (2020). https://doi.org/10.1146/annurev-immunol-102419-035900

    Article  CAS  PubMed  Google Scholar 

  12. Attrill, H., Imamura, A., Sharma, R.S., Kiso, M., Crocker, P.R., van Aalten, D.M.: Siglec-7 undergoes a major conformational change when complexed with the alpha(2,8)-disialylganglioside GT1b. J. Biol. Chem 281(43), 32774–32783 (2006). https://doi.org/10.1074/jbc.M601714200

    Article  CAS  PubMed  Google Scholar 

  13. Yamakawa, N., Yasuda, Y., Yoshimura, A., Goshima, A., Crocker, P.R., Vergoten, G., Nishiura, Y., Takahashi, T., Hanashima, S., Matsumoto, K., Yamaguchi, Y., Tanaka, H., Kitajima, K., Sato, C.: Discovery of a new sialic acid binding region that regulates Siglec-7. Sci. Rep 10(1), 8647 (2020). https://doi.org/10.1038/s41598-020-64887-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jung, J., Enterina, J.R., Bui, D.T., Mozaneh, F., Lin, P.H., Nitin, Kuo, C.W., Rodrigues, E., Bhattacherjee, A., Raeisimakiani, P., Daskhan, G.C., Laurent, S., Khoo, C.D., Mahal, K.H., Zandberg, L.K., Huang, W.F., Klassen, X., Macauley, J.S.: Carbohydrate sulfation as a mechanism for fine-tuning Siglec ligands. ACS Chem. Biol 16(11), 2673–2689 (2021). https://doi.org/10.1021/acschembio.1c00501

    Article  CAS  PubMed  Google Scholar 

  15. Siddiqui, S.S., Vaill, M., Do, R., Khan, N., Verhagen, A.L., Zhang, W., Lenz, H.J., Johnson-Pais, T.L., Leach, R.J., Fraser, G., Wang, C., Feng, G.S., Varki, N., Varki, A.: Human-specific polymorphic pseudogenization of SIGLEC12 protects against advanced cancer progression. FASEB Bioadv 3(2), 69–82 (2021). https://doi.org/10.1096/fba.2020-00092

    Article  CAS  PubMed  Google Scholar 

  16. Crocker, P.R., Paulson, J.C., Varki, A.: Siglecs and their roles in the immune system. Nat. Rev. Immunol 7(4), 255–266 (2007). https://www.nature.com/articles/nri2056

    Article  CAS  PubMed  Google Scholar 

  17. Gonzalez-Gil, A., Li, T.A., Kim, J., Schnaar, R.L.: Human sialoglycan ligands for immune inhibitory siglecs. Mol. Aspects Med. 101110 (2022). https://doi.org/10.1016/j.mam.2022.101110

  18. Jia, Y., Yu, H., Fernandes, S.M., Wei, Y., Gonzalez-Gil, A., Motari, M.G., Vajn, K., Stevens, W.W., Peters, A.T., Bochner, B.S., Kern, R.C., Schleimer, R.P., Schnaar, R.L.: Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells. J. Allergy Clin. Immunol 135(3), 799–810 (2015). https://doi.org/10.1016/j.jaci.2015.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, H.S., Gonzalez-Gil, A., Drake, V., Li, T.A., Schnaar, R.L., Kim, J.: Induction of the endogenous sialoglycan ligand for eosinophil death receptor Siglec-8 in chronic rhinosinusitis with hyperplastic nasal polyposis. Glycobiology 31(8), 1026–1036 (2021). https://doi.org/10.1093/glycob/cwab018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lim, J., Sari-Ak, D., Bagga, T.: Siglecs as therapeutic targets in cancer. Biology (Basel) 10(11), 1178 (2021). https://doi.org/10.3390/biology10111178

    Article  CAS  PubMed  Google Scholar 

  21. Li, T.A., Schnaar, R.L.: Congenital disorders of Ganglioside Biosynthesis. Prog Mol. Biol. Transl Sci 156, 63–82 (2018). https://doi.org/10.1016/bs.pmbts.2018.01.001

    Article  CAS  PubMed  Google Scholar 

  22. Yu, R.K., Tsai, Y.T., Ariga, T., Yanagisawa, M.: Structures, biosynthesis, and functions of gangliosides-an overview. J. Oleo Sci 60(10), 537–544 (2011). https://doi.org/10.5650/jos.60.537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lopez, P.H., Aja, S., Aoki, K., Seldin, M.M., Lei, X., Ronnett, G.V., Wong, G.W., Schnaar, R.L.: Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance. Glycobiology 27(2), 129–139 (2017). https://doi.org/10.1093/glycob/cww098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schnaar, R.L., Gerardy-Schahn, R., Hildebrandt, H.: Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease and regeneration. Physiol. Rev 94, 461–518 (2014). https://doi.org/10.1152/physrev.00033.2013

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chan, G.C., Chan, C.M.: Anti-GD2 Directed immunotherapy for high-risk and metastatic neuroblastoma. Biomolecules. 12(3) (2022). https://doi.org/10.3390/biom12030358

  26. Kasprowicz, A., Sophie, G.D., Lagadec, C., Delannoy, P.: Role of GD3 synthase ST8Sia I in cancers. Cancers (Basel) 14(5), 1299 (2022). https://doi.org/10.3390/cancers14051299

    Article  CAS  PubMed  Google Scholar 

  27. Varki, A., Cummings, R.D., Aebi, M., Packer, N.H., Seeberger, P.H., Esko, J.D., Stanley, P., Hart, G., Darvill, A., Kinoshita, T., Prestegard, J.J., Schnaar, R.L., Freeze, H.H., Marth, J.D., Bertozzi, C.R., Etzler, M.E., Frank, M., Vliegenthart, J.F., Lutteke, T., Perez, S., Bolton, E., Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K.F., Dell, A., Narimatsu, H., York, W., Taniguchi, N., Kornfeld, S.: Symbol nomenclature for graphical representations of glycans. Glycobiology 25(12), 1323–1324 (2015). https://doi.org/10.1093/glycob/cwv091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quarles, R.H.: Myelin-associated glycoprotein (MAG): past, present and beyond. J. Neurochem 100(6), 1431–1448 (2007). https://doi.org/10.1111/j.1471-4159.2006.04319.x

    CAS  PubMed  Google Scholar 

  29. Yang, L.J.-S., Zeller, C.B., Shaper, N.L., Kiso, M., Hasegawa, A., Shapiro, R.E., Schnaar, R.L.: Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl. Acad. Sci. U. S. A 93, 814–818 (1996). https://doi.org/10.1073/pnas.93.2.814

  30. Pan, B., Fromholt, S.E., Hess, E.J., Crawford, T.O., Griffin, J.W., Sheikh, K.A., Schnaar, R.L.: Myelin-associated glycoprotein and complementary axonal ligands, gangliosides, mediate axon stability in the CNS and PNS: neuropathology and behavioral deficits in single- and double-null mice. Exp. Neurol 195(1), 208–217 (2005). https://doi.org/10.1016/j.expneurol.2005.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu, Y., Wada, R., Kawai, H., Sango, K., Deng, C., Tai, T., McDonald, M.P., Araujo, K., Crawley, J.N., Bierfreund, U., Sandhoff, K., Suzuki, K., Proia, R.L.: A genetic model of substrate deprivation therapy for a glycosphingolipid storage disorder. J. Clin. Invest 103, 497–505 (1999). https://doi.org/10.1172/JCI5542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, J., Shaper, N.L., Itonori, S., Heffer-Lauc, M., Sheikh, K.A., Schnaar, R.L.: Myelin-associated glycoprotein (Siglec-4) expression is progressively and selectively decreased in the brains of mice lacking complex gangliosides. Glycobiology 14(9), 851–857 (2004). https://doi.org/10.1093/glycob/cwh107

    Article  CAS  PubMed  Google Scholar 

  33. Roda, R.H., FitzGibbon, E.J., Boucekkine, H., Schindler, A.B., Blackstone, C.: Neurologic syndrome associated with homozygous mutation at MAG sialic acid binding site. Ann. Clin. Transl Neurol 3(8), 650–654 (2016). https://doi.org/10.1002/acn3.329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pronker, M.F., Lemstra, S., Snijder, J., Heck, A.J., Thies-Weesie, D.M., Pasterkamp, R.J., Janssen, B.J.: Structural basis of myelin-associated glycoprotein adhesion and signalling. Nat. Commun 7, 13584 (2016). https://doi.org/10.1038/ncomms13584

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nicoll, G., Ni, J., Liu, D., Klenerman, P., Munday, J., Dubock, S., Mattei, M.G., Crocker, P.R.: Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J. Biol. Chem 274(48), 34089–34095 (1999). https://doi.org/10.1074/jbc.274.48.34089

    Article  CAS  PubMed  Google Scholar 

  36. Hugonnet, M., Singh, P., Haas, Q., von Gunten, S.: The distinct roles of Sialyltransferases in cancer biology and onco-immunology. Front. Immunol 12, 799861 (2021). https://doi.org/10.3389/fimmu.2021.799861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Daly, J., Carlsten, M., O’Dwyer, M.: Sugar free: novel immunotherapeutic approaches targeting siglecs and sialic acids to enhance natural killer cell cytotoxicity against cancer. Front. Immunol 10, 1047 (2019). https://doi.org/10.3389/fimmu.2019.01047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yamaji, T., Teranishi, T., Alphey, M.S., Crocker, P.R., Hashimoto, Y.: A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha2,8-disialyl and branched alpha2,6-sialyl residues: a comparison with Siglec-9. J. Biol. Chem 277, 6324–6332 (2002). https://doi.org/10.1074/jbc.M110146200

    Article  CAS  PubMed  Google Scholar 

  39. Furukawa, K., Hamamura, K., Nakashima, H., Furukawa, K.: Molecules in the signaling pathway activated by gangliosides can be targets of therapeutics for malignant melanomas. Proteomics 8(16), 3312–3316 (2008). https://doi.org/10.1002/pmic.200800228

    Article  CAS  PubMed  Google Scholar 

  40. Qiu, B., Matthay, K.K.: Advancing therapy for neuroblastoma. Nat. Rev. Clin. Oncol (2022). https://doi.org/10.1038/s41571-022-00643-z

    Article  PubMed  Google Scholar 

  41. Theruvath, J., Menard, M., Smith, B.A.H., Linde, M.H., Coles, G.L., Dalton, G.N., Wu, W., Kiru, L., Delaidelli, A., Sotillo, E., Silberstein, J.L., Geraghty, A.C., Banuelos, A., Radosevich, M.T., Dhingra, S., Heitzeneder, S., Tousley, A., Lattin, J., Xu, P., Huang, J., Nasholm, N., He, A., Kuo, T.C., Sangalang, E.R.B., Pons, J., Barkal, A., Brewer, R.E., Marjon, K.D., Vilches-Moure, J.G., Marshall, P.L., Fernandes, R., Monje, M., Cochran, J.R., Sorensen, P.H., Daldrup-Link, H.E., Weissman, I.L., Sage, J., Majeti, R., Bertozzi, C.R., Weiss, W.A., Mackall, C.L., Majzner, R.G.: Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication. Nat. Med 28(2), 333–344 (2022). https://doi.org/10.1038/s41591-021-01625-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Attrill, H., Takazawa, H., Witt, S., Kelm, S., Isecke, R., Brossmer, R., Ando, T., Ishida, H., Kiso, M., Crocker, P.R., van Aalten, D.M.: The structure of siglec-7 in complex with sialosides: leads for rational structure-based inhibitor design. Biochem. J 397(2), 271–278 (2006). https://doi.org/10.1042/BJ20060103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hashimoto, N., Ito, S., Tsuchida, A., Bhuiyan, R.H., Okajima, T., Yamamoto, A., Furukawa, K., Ohmi, Y., Furukawa, K.: The ceramide moiety of disialoganglioside (GD3) is essential for GD3 recognition by the sialic acid-binding lectin SIGLEC7 on the cell surface. J. Biol. Chem 294(28), 10833–10845 (2019). https://doi.org/10.1074/jbc.RA118.007083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Klaas, M., Crocker, P.R.: Sialoadhesin in recognition of self and non-self. Semin Immunopathol 34(3), 353–364 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. Perez-Zsolt, D., Martinez-Picado, J., Izquierdo-Useros, N.: When dendritic cells go viral: the role of Siglec-1 in host defense and dissemination of enveloped viruses. Viruses. 12(1) (2019). https://doi.org/10.3390/v12010008

  46. Collins, B.E., Kiso, M., Hasegawa, A., Tropak, M.B., Roder, J.C., Crocker, P.R., Schnaar, R.L.: Binding specificities of the sialoadhesin family of I-type lectins. Sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J. Biol. Chem 272(27), 16889–16895 (1997). https://doi.org/10.1074/jbc.272.27.16889

    Article  CAS  PubMed  Google Scholar 

  47. Zang, H., Siddiqui, M., Gummuluru, S., Wong, W.W., Reinhard, B.M.: Ganglioside-functionalized nanoparticles for chimeric antigen receptor T-Cell activation at the immunological synapse. ACS Nano (2022). https://doi.org/10.1021/acsnano.2c06516

    Article  PubMed  Google Scholar 

  48. Affandi, A.J., Grabowska, J., Olesek, K., Lopez Venegas, M., Barbaria, A., Rodriguez, E., Mulder, P.P.G., Pijffers, H.J., Ambrosini, M., Kalay, H., O’Toole, T., Zwart, E.S., Kazemier, G., Nazmi, K., Bikker, F.J., Stockl, J., van den Eertwegh, A.J.M., de Gruijl, T.D., Storm, G., van Kooyk, Y., den Haan, J.M.M.: Selective tumor antigen vaccine delivery to human CD169(+) antigen-presenting cells using ganglioside-liposomes. Proc. Natl. Acad. Sci. U. S. A. 117(44), 27528–27539 (2020). https://doi.org/10.1073/pnas.2006186117

  49. Ledeen, R.W., Kopitz, J., Abad-Rodríguez, J., Gabius, H.J.: Glycan chains of gangliosides: functional ligands for tissue lectins (Siglecs/Galectins). Prog. Mol. Biol. Transl. Sci. 156, 289–324 (2018). https://doi.org/10.1016/bs.pmbts.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  50. Linnartz-Gerlach, B., Mathews, M., Neumann, H.: Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience 275, 113–124 (2014). https://doi.org/10.1016/j.neuroscience.2014.05.061

    Article  CAS  PubMed  Google Scholar 

  51. Rapoport, E., Mikhalyov, I., Zhang, J., Crocker, P., Bovin, N.: Ganglioside binding pattern of CD33-related siglecs. Bioorg. Med. Chem. Lett. 13(4), 675–678 (2003). https://doi.org/10.1016/S0960-894X(02)00998-8

    Article  CAS  PubMed  Google Scholar 

  52. Bull, C., Nason, R., Sun, L., Van Coillie, J., Madriz Sorensen, D., Moons, S.J., Yang, Z., Arbitman, S., Fernandes, S.M., Furukawa, S., McBride, R., Nycholat, C.M., Adema, G.J., Paulson, J.C., Schnaar, R.L., Boltje, T.J., Clausen, H., Narimatsu, Y.: Probing the binding specificities of human Siglecs by cell-based glycan arrays. Proc. Natl. Acad. Sci. U. S. A. 118(17), e2026102118 (2021). https://doi.org/10.1073/pnas.2026102118

  53. Yu, H., Gonzalez-Gil, A., Wei, Y., Fernandes, S.M., Porell, R.N., Vajn, K., Paulson, J.C., Nycholat, C.M., Schnaar, R.L.: Siglec-8 and Siglec-9 binding specificities and endogenous airway ligand distributions and properties. Glycobiology 27(7), 657–668 (2017). https://doi.org/10.1093/glycob/cwx026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This review is dedicated to the memory of a founder and leader in our field, Roland Schauer. His insights, rigor, openness and support have been highlights of my career. Although we are not related, the similarity of our names (Ronald Schnaar and Roland Schauer, 64% sequence identical) has at times led strangers to mistake me for Roland. For this I was always grateful and aspired to be worthy of their error. As the field of sialobiology rapidly expands, Roland’s early appreciation of its potential and highly significant contributions to its progress remain a foundation on which the field is built.

Funding

The writing of this manuscript was supported by National Institutes of Health Grants CA241953 and AI136443.

Author information

Authors and Affiliations

Authors

Contributions

RLS performed the literature search and analyses and wrote the manuscript.

Corresponding author

Correspondence to Ronald L. Schnaar.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This review article reports only on human and animal studies that were previously published. No new data are reported.

Competing interests

The author reports no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schnaar, R.L. Gangliosides as Siglec ligands. Glycoconj J 40, 159–167 (2023). https://doi.org/10.1007/s10719-023-10101-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10101-2

Keywords

Navigation