Skip to main content

Advertisement

Log in

Fluorescent GD2 analog for single-molecule imaging

  • Research Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Ganglioside GD2 is associated with the proliferation and migration of breast cancer cells. However, the precise role of GD2 is unclear because its tendency to form dynamic and transient domains in cell plasma membranes (PMs), called lipid rafts, makes it difficult to observe. Previously, we developed fluorescent analogs of gangliosides (e.g., GM3 and GM1), which enabled the observation of lipid raft formation for the first time using single-molecule imaging. In this report, we describe the first chemical synthesis of a fluorescent ganglioside, GD2. A biophysical analysis of the synthesized analog revealed its raft-philic character, suggesting its potential to aid single-molecule imaging-based investigations into raft-associated interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2

Similar content being viewed by others

Data availability

The data underlying this study are available in the published article and its Supplementary Information files.

References

  1. Lopez, P.H., Schnaar, R.L.: Gangliosides in cell recognition and membrane protein regulation. Curr. Opin. Struct. Biol 19, 549–557 (2009). https://doi.org/10.1016/j.sbi.2009.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haselhorst, T., Fleming, F.E., Dyason, J.C., Hartnell, R.D., Yu, X., Holloway, G., Santegoets, K., Kiefel, M.J., Blanchard, H., Coulson, B.S., von Itzstein, M.: Sialic acid dependence in rotavirus host cell invasion. Nat. Chem. Biol 5, 91–93 (2009). https://doi.org/10.1038/nchembio.134

    Article  CAS  PubMed  Google Scholar 

  3. Stencel-Baerenwald, J.E., Reiss, K., Reiter, D.M., Stehle, T., Dermody, T.S.: The sweet spot: defining virus–sialic acid interactions. Nat. Rev. Microbiol 12, 739–749 (2014). https://doi.org/10.1038/nrmicro3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997). https://doi.org/10.1038/42408

    Article  CAS  PubMed  Google Scholar 

  5. Simons, K., Gerl, M.J.: Revitalizing membrane rafts: new tools and insights. Nat. Rev. Mol. Cell. Biol 11, 688–699 (2010). https://doi.org/10.1038/nrm2977

    Article  CAS  PubMed  Google Scholar 

  6. Suzuki, K.G.N., Kasai, R.S., Hirosawa, K.M., Nemoto, Y.L., Ishibashi, M., Miwa, Y., Fujiwara, T.K., Kusumi, A.: Transient GPI-anchored protein homodimers are units for raft organization and function. Nat. Chem. Biol 8, 774–783 (2012). https://doi.org/10.1038/nchembio.1028

    Article  CAS  PubMed  Google Scholar 

  7. Komura, N., Suzuki, K.G.N., Ando, H., Konishi, M., Koikeda, M., Imamura, A., Chadda, R., Fujiwara, T.K., Tsuboi, H., Sheng, R., Cho, W., Furukawa, K., Furukawa, K., Yamauchi, Y., Ishida, H., Kusumi, A., Kiso, M.: Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol 12, 402–410 (2016). https://doi.org/10.1038/nchembio.2059

    Article  CAS  PubMed  Google Scholar 

  8. Konishi, M., Komura, N., Hirose, Y., Suganuma, Y., Tanaka, H.-N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of fluorescent ganglioside GD3 and GQ1b analogs for elucidation of raft-associated interactions. J. Org. Chem 85, 15998–16013 (2020). https://doi.org/10.1021/acs.joc.0c01493

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, M., Komura, N., Yoshida, Y., Yamaguchi, E., Hasegawa, A., Tanaka, H.-N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of lacto-series ganglioside fluorescent probe using late-stage sialylation and behavior analysis with single-molecule imaging. RSC Chem. Biol 3, 868–885 (2022). https://doi.org/10.1039/D2CB00083K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Battula, V.L., Shi, Y., Evans, K.W., Wang, R.Y., Spaeth, E.L., Jacamo, R.O., Guerra, R., Sahin, A.A., Marini, F.C., Hortobagyi, G., Mani, S.A., Andreeff, M.: Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J. Clin. Invest 122, 2066–2078 (2012). https://doi.org/10.1172/JCI59735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nazha, B., Inal, C., Owonikoko, T.K.: Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front. Oncol 10, 1000 (2020). https://doi.org/10.3389/fonc.2020.01000

    Article  PubMed  PubMed Central  Google Scholar 

  12. Koikeda, M., Komura, N., Tanaka, H.-N., Imamura, A., Ishida, H., Kiso, M., Ando, H.: Synthesis of ganglioside analogs containing fluorescently labeled GalNAc for single-molecule imaging. J. Carbohydr. Chem 38, 509–527 (2019). https://doi.org/10.1080/07328303.2019.1609019

    Article  CAS  Google Scholar 

  13. Imamura, A., Ando, H., Ishida, H., Kiso, M.: Ganglioside GQ1b: efficient total synthesis and the expansion to synthetic derivatives to elucidate its biological roles. J. Org. Chem 74, 3009–3023 (2009). https://doi.org/10.1021/jo8027888

    Article  CAS  PubMed  Google Scholar 

  14. Tamai, H., Ando, H., Tanaka, H.-N., Hosoda-Yabe, R., Yabe, T., Ishida, H., Kiso, M.: The total synthesis of the neurogenic ganglioside LLG-3 isolated from the starfish Linckia laevigata Angew Chem. Int. Ed 50, 2330–2333 (2011). https://doi.org/10.1002/anie.201006035

    Article  CAS  Google Scholar 

  15. Nakashima, S., Ando, H., Saito, R., Tamai, H., Ishida, H., Kiso, M.: Efficiently synthesizing lacto-ganglio-series gangliosides by using a glucosyl ceramide cassette approach: the total synthesis of ganglioside X2. Chem Asian J 7, 1041–1051 (2012). https://doi.org/10.1002/asia.201100928

    Article  CAS  PubMed  Google Scholar 

  16. Asano, S., Tanaka, H.-N., Imamura, A., Ishida, H., Ando, H.: p-tert-butyl groups improve the utility of aromatic protecting groups in carbohydrate synthesis. Org. Lett. 21, 4197–4200 (2019). https://doi.org/10.1021/acs.orglett.9b01372

    Article  CAS  PubMed  Google Scholar 

  17. Ishida, H., Ohta, Y., Tsukada, Y., Kiso, M., Hasegawa, A.: A synthetic approach to polysialogangliosides containing α-sialyl-(2→8)-sialic acid: total synthesis of ganglioside GD3. Carbohydr. Res 246, 75–88 (1993). https://doi.org/10.1016/0008-6215(93)84025-2

    Article  CAS  PubMed  Google Scholar 

  18. Kenworthy, A.K., Nichols, B.J., Remmert, C.L., Hendirix, G.M., Kumar, M., Zimmerberg, J., Lippincott-Schwartz, J.: Dynamics of putative raft-associated proteins at the cell surface. J. Cell. Biol 165, 735–746 (2004). https://doi.org/10.1083/jcb.200312170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Asano, S., Pal, R., Tanaka, H.-N., Imamura, A., Ishida, H., Suzuki, K.G.N., Ando, H.: Development of fluorescently labeled SSEA-3, SSEA-4, and Globo-H glycosphingolipids for elucidating molecular interactions in the cell membrane. Int. J. Mol. Sci 20, 6187 (2019). https://doi.org/10.3390/ijms20246187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tanaka, K.A.K., Suzuki, K.G.N., Shirai, Y.M., Shibutani, S.T., Miyahara, M.S.H., Tsuboi, H., Yahara, M., Yoshimura, A., Mayor, S., Fujiwara, T.K., Kusumi, A.: Membrane molecules mobile even after chemical fixation. Nat. Methods 7, 865–866 (2010). https://doi.org/10.1038/nmeth.f.314

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. JP18H0392 (H. A.), JP20K15412 (N. K.), and JP21H02424 (K. G. N. S); JSPS Core-to-Core Program Grant No. JPJSCCA20200007 (H. A.); Japan Science and Technology Agency (JST) CREST Grant No. JRMJCR18H2 (H. A. and K. G. N. S.); JST FOREST Grant No. JPMJFR2004 (N. K.); the Mizutani Foundation for Glycoscience (H. A. and K. G. N. S.), SUNBOR Grant from the Suntory Foundation for Life Sciences (N. K.).

Funding

This work was supported by the funding organizations listed in the Acknowledgments.

Author information

Authors and Affiliations

Authors

Contributions

N.K., S. G.-D., M. M., K.G.N.S., and H.A. conceived this research and designed the experiments; E.Y. and A.I. performed the chemical synthesis; K.G.N.S. performed the biophysical evaluation; E.Y., N.K., H.-N.T., A.I., H.I., K.G.N.S. and H.A. analyzed the data; N.K., K.G.N.S. and H.A. wrote the original draft of the manuscript; all authors contributed to its reviewing and editing.

Corresponding authors

Correspondence to Naoko Komura, Kenichi G. N. Suzuki or Hiromune Ando.

Ethics declarations

Ethics approval

This work does not include any studies involving humans or animals.

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4.22 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, E., Komura, N., Tanaka, HN. et al. Fluorescent GD2 analog for single-molecule imaging. Glycoconj J 40, 247–257 (2023). https://doi.org/10.1007/s10719-023-10102-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10102-1

Keywords

Navigation