Skip to main content
Log in

Ultra-low-frequency radio astronomy observations from a Seleno-centric orbit

First results of the Longjiang-2 experiment

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

This paper introduces the first results of observations with the Ultra-Long-Wavelength (ULW) —- Low Frequency Interferometer and Spectrometer (LFIS) on board the selenocentric satellite Longjiang-2. We present a brief description of the satellite and focus on the LFIS payload. The in-orbit commissioning confirmed a reliable operational status of the instrumentation. We also present results of a transition observation, which offers unique measurements on several novel aspects. We estimate the RFI suppression required for such a radio astronomy instrumentation at the Moon-distances from Earth as order of − 80 dB. We analyse a method of separating Earth- and satellite-originated radio frequency interference (RFI). It is found that the RFI level at frequencies lower than a few MHz is smaller than the receiver noise floor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the National Space Science Data Center, owned by the Lunar Exploration and Space Program Center, China National Space Administration but restrictions apply to the availability of these data, which were used under license from the Lunar Exploration and Space Program Center, and so are not publicly available. Data are however available from the authors upon reasonable request and permission of the Lunar Exploration and Space Program Center.

Notes

  1. http://www.lofar.org, accessed 2021.03.20

  2. http://lwa.unm.edu, accessed 2021.03.20

  3. http://mwatelescope.org, accessed 2021.03.20

  4. http://astronomers.skatelescope.org, accessed 2021.03.20

  5. A detailed analysis of the system temperature and the sky temperature measured by LFIS is outside of the scope of this paper and will be addressed elsewhere. However, we note that our preliminary estimates indicated the LFIS antenna temperature was below 104 K, while the sky temperature at 30 MHz was about 104 K smoothly rising to 7 × 107 K at 6 MHz.

  6. IAA Permanent Committee on Moon Farside Protection: https://iaaspace.org/about/permanent-committees/#1658152007849-7e3d453e-d9ba, accessed on 2022.11.03.

References

  1. Alexander, J.K., Kaiser, M.L., Novaco, J.C., Grena, F.R., Weber, R.R.: Scientific instrumentation of the Radio-Astronomy-Explorer-2 satellite. A&A 40(4), 365–371 (1975)

    ADS  Google Scholar 

  2. Alexander, J.K., Novaco, J.C.: Survey of the galactic background radiation at 3.93 and 6.55 MHz. AJ 79, 777 (1974)

    Article  ADS  Google Scholar 

  3. Belov, K., Branch, A., Broschart, S., Castillo-Rogez, J., Chien, S., Clare, L., Dengler, R., Gao, J., Garza, D., Hegedus, A., Hernandez, S., Herzig, S., Imken, T., Kim, H., Mandutianu, S., Romero-Wolf, A., Schaffer, S., Troesch, M., Wyatt, E.J., Lazio, J.: A space-based decametric wavelength radio telescope concept. Exp. Astron. 46(2), 241–284 (2018)

    Article  ADS  Google Scholar 

  4. Bely, P.-Y., Laurance, R. J., Volonte, S., et al.: Very low frequency array on the lunar far side. Report by the very low frequency astronomy study team. Technical Report ESA SCI(97)2, European Space Agency (1997)

  5. Bentum, M.J., Verma, M.K., Rajan, R.T., Boonstra, A.J., Verhoeven, C.J.M., Gill, E.K.A., van der Veen, A.J., Falcke, H., Wolt, M.K., Monna, B., Engelen, S., Rotteveel, J., Gurvits, L.I.: A roadmap towards a space-based radio telescope for ultra-low frequency radio astronomy. Adv. Space Res. 65(2), 856–867 (2020)

    Article  ADS  Google Scholar 

  6. Boischot, A., Rosolen, C., Aubier, M.G., Daigne, G., Genova, F., Leblanc, Y., Lecacheux, A., de La Noe, J., Moller-Pedersen, B.: A new high-grain, broadband, steerable array to study Jovian decametric emission. Icarus 43(3), 399–407 (1980)

    Article  ADS  Google Scholar 

  7. Boonstra, A. -J., Garrett, M., Kruithof, G., Wise, M., van Ardenne, A., Yan, J., Wu, J., Zheng, J., Eberhard K. A., Gill, E.K., Guo, J., Bentum, M., Girard, J.N., Hong, X., An, T., Falcke, H., Klein-Wolt, M., Wu, S., Chen, W., Koopmans, L., Rothkaehl, H., Chen, X., Huang, M., Chen, L., Gurvits, L. I., Zarka, P., Cecconi, B., de Haan, H.: Discovering the Sky at the Longest Wavelengths (DSL). IAAA Aerospace Conference 1, 20 (2016)

    Google Scholar 

  8. Bridle, A.H., Purton, C.R.: Observations of radio sources at 10.03 MHz. AJ 73, 717–726 (1968)

    Article  ADS  Google Scholar 

  9. Brown, L.W.: The galactic radio spectrum between 130 and 26OOkhz. ApJ 180, 359–370 (1973)

    Article  ADS  Google Scholar 

  10. Burns, J.O., Bradley, R., Tauscher, K., Furlanetto, S., Mirocha, J., Monsalve, R., Rapetti, D., Purcell, W., Newell, D., Draper, D., MacDowall, R., Bowman, J., Nhan, B., Wollack, E.J., Fialkov, A., Jones, D., Kasper, J.C., Loeb, A., Datta, A., Pritchard, J., Switzer, E., Bicay, M.: A space-based observational strategy for characterizing the first stars and galaxies using the Redshifted 21 cm Global Spectrums. ApJ 844(1), 33 (2017)

    Article  ADS  Google Scholar 

  11. Butora, R., Martín-neira, M., Rivada-Antich, A.-L.: Fringe-washing function calibration in aperture synthesis microwave radiometry. Radio Sci. 38(2), 1032 (2003)

    Article  ADS  Google Scholar 

  12. Cane, H.V.: A 30 MHz map of the whole sky. Aust. J. Phys. 31, 561 (1978)

    Article  ADS  Google Scholar 

  13. Cane, H.V., Whitham, P.S.: Observations of the southern sky at five frequencies in the range 2 - 20 MHz. MNRAS 179, 21–29 (1977)

    Article  ADS  Google Scholar 

  14. Cao, X., Hu, C., Kong, X., Othman, M.B., Wang, F., Kong, X., Yan, J.: Longjiang-2: the first independent earth-moon-transfer microsatellite. Journal of Astronautics 41(6), 790–799 (2020)

    Google Scholar 

  15. Caswell, J.L.: A map of the northern sky at 10 MHz. MNRAS 177, 601–616 (1976)

    Article  ADS  Google Scholar 

  16. Chen, L., Aminaei, A., Gurvits, L.I., Wolt, M.K., Pourshaghaghi, H.R., Yan, Y., Falcke, H.: Antenna design and implementation for the future space Ultra-Long wavelength radio telescope. Exp. Astron. 45(2), 231–253 (2018)

    Article  ADS  Google Scholar 

  17. Chen, X., Burns, J., Koopmans, L., Rothkaehl, H., Silk, J., Wu, J., Boonstra, A. -J., Cecconi, B., Chiang, C.H., Chen, L., Deng, L., Falanga, M., Falcke, H., Fan, Q., Fang, G., Fialkov, A., Gurvits, L., Ji, Y., Kasper, J.C., Li, K., Mao, Y., Mckinley, B., Monsalve, R., Peterson, J.B., Ping, J., Subrahmanyan, R., Vedantham, H., Klein Wolt, M., Wu, F., Xu, Y., Yan, J., Yue, B.: Discovering the sky at the longest wavelengths with small satellite constellations. arXiv:1907.10853 (2019)

  18. Erickson, W.C., Mahoney, M.J., Erb, K.: The clark lake teepee-tee telescope. ApJ Supp. 50, 403–419 (1982)

    Article  ADS  Google Scholar 

  19. Jansky, K.G.: Electrical phenomena that apparently are of interstellar origin. Popular Astronomy 41, 548–555 (1933a)

    ADS  Google Scholar 

  20. Jansky, K.G.: Radio waves from outside the solar system. Nature 132(3323), 66 (1933b)

    Article  ADS  Google Scholar 

  21. Jester, S., Falcke, H.: Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. 53(1-2), 1–26 (2009)

    Article  ADS  Google Scholar 

  22. Jones, D.L., Weiler, K.W., Allen, R.J., Desch, M.M., Erickson, W.C., Kaiser, M.L., Kassim, N.E., Kuiper, T.B.H., Mahoney, M.J., Marsh, K.A., Perley, R.A., Preston, R.A., Stone, R.G.: The astronomical Low-Frequency array (ALFA). In: Zensus J. A., Taylor, G. B., Wrobel, J. M. (eds.) IAU Colloq. 164: Radio Emission from Galactic and Extragalactic Compact Sources, volume 144 of Astronomical Society of the Pacific Conference Series, p 393 (1998)

  23. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V.V., Shevchenko, V.A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y., Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.M., Tagger, M., Girard, J., Charrier, D., Briand, C., Mann, G.: The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. 42(1), 11–48 (2016)

    Article  ADS  Google Scholar 

  24. Koopmans, L.V.E., Barkana, R., Bentum, M., Bernardi, G., Boonstra, A. -J., Bowman, J., Burns, J., Chen, X., Datta, A., Falcke, H., Fialkov, A., Gehlot, B., Gurvits, L., Jelić, V., Klein-Wolt, M., Lazio, J., Meerburg, D., Mellema, G., Mertens, F., Mesinger, A., Offringa, A., Pritchard, J., Semelin, B., Subrahmanyan, R., Silk, J., Trott, C., Vedantham, H., Verde, L., Zaroubi, S., Zarka, P.: Peering into the dark (ages) with low-frequency space interferometers. Exp. Astron. 51(3), 1641–1676 (2021)

    Article  ADS  Google Scholar 

  25. Mimoun, D., Wieczorek, M. A., Alkalai, L., Banerdt, W. B., Baratoux, D., Bougeret, J.-L., Bouley, S., Cecconi, B., Falcke, H., Flohrer, J., Garcia, R. F., Grimm, R., Grott, M., Gurvits, L., Jaumann, R., Johnson, C. L., Knapmeyer, M., Kobayashi, N., Konovalenko, A., Lawrence, D., Le Feuvre, M., Lognonné, P., Neal, C., Oberst, J., Olsen, N., Röttgering, H., Spohn, T., Vennerstrom, S., Woan, G., Zarka, P.: Farside explorer: unique science from a mission to the farside of the moon. Exp. Astron. 33(2-3), 529–585 (2012)

    Article  ADS  Google Scholar 

  26. Nieuwenhuizen, M.P., Beenen, R., Simons, W.: ALFIS: Astronomical Low Frequency Interferometry Satellites. A Feasibility Study Technical Report LR-699. Delft University of Technology, Aerospace Faculty (1992)

  27. Novaco, J.C., Brown, L.W.: Nonthermal galactic emission below 10 megahertz. ApJ 221, 114–123 (1978)

    Article  ADS  Google Scholar 

  28. Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., Garipov, G.K., Balan, E.A., Barinova, V.O., Bogomolov, A.V., Golovanov, I.A., Iyudin, A.F., Kalegaev, V.V., Khrenov, B.A., Klimov, P.A., Kovtyukh, A.S., Kuznetsova, E.A., Morozenko, V.S., Morozov, O.V., Myagkova, I.N., Osedlo, V.I., Petrov, V.L., Prokhorov, A.V., Rozhkov, G.V., Saleev, K.Y., Sigaeva, E.A., Veden’kin, N.N., Yashin, I.V., Klimov, S.I., Grechko, T.V., Grushin, V.A., Vavilov, D.I., Korepanov, V.E., Belyaev, S.V., Demidov, A.N., Ferencz, C., Bodnár, L., Szegedi, P., Rothkaehl, H., Moravski, M., Park, I. H., Lee, J., Kim, J., Jeon, J., Jeong, S., Park, A. H., Papkov, A. P., Krasnopejev, S. V., Khartov, V. V., Kudrjashov, V. A., Bortnikov, S. V., Mzhelskii, P. V: RELEC mission: Relativistic electron precipitation and TLE study on-board small spacecraft. Adv. Space Res. 57(3), 835–849 (2016)

    Article  ADS  Google Scholar 

  29. Reber, G.: Hectometer radio astronomy. J. Roy. Astron. Soc. Can. 88, 297 (1994)

    ADS  Google Scholar 

  30. Roger, R.S., Costain, C.H., Landecker, T.L., Swerdlyk, C.M.: The radio emission from the Galaxy at 22 MHz. A&A Suppl Ser. 137, 7–19 (1999)

    Article  ADS  Google Scholar 

  31. Wu, J., Yan, J., Wu, L., Zheng, J.: An imaging method based on satellite array. China Patent ZL201510208120.5 (2015)

Download references

Acknowledgements

We are grateful to the Lunar Exploration and Space Program Center, China National Space Administration for the piggybacking opportunity for the Longjiang flight on the Chang’E-4 Lunar mission. The China-Europe joint team for the DSL concept helped to refine many details of the experiment presented in this paper. We acknowledge with gratitude very useful comments provided by the anonymous reviewer of the manuscript of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingye Yan.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Wu, J., Gurvits, L.I. et al. Ultra-low-frequency radio astronomy observations from a Seleno-centric orbit. Exp Astron 56, 333–353 (2023). https://doi.org/10.1007/s10686-022-09887-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-022-09887-0

Keywords

Navigation