Skip to main content

Advertisement

Log in

A topology-based approach to individual tree segmentation from airborne LiDAR data

  • Published:
GeoInformatica Aims and scope Submit manuscript

Abstract

Light Detection and Ranging (LiDAR) sensors emit laser signals to calculate distances based on the time delay of the returned laser pulses. They can generate dense point clouds to map forest structures at a high level of spatial resolution. In this work, we consider the problem of segmenting out individual trees in Airborne Laser Scanning (ALS) point clouds. Several techniques have been proposed for this purpose which generally require time-consuming parameter tuning and intense user interaction. Our goal is to design an automated, intuitive, and robust approach requiring minimal user interaction. To this aim, we define a new segmentation approach based on topological tools, namely on the watershed transform and on persistence-based simplification. The approach follows a divide-and-conquer paradigm, splitting a LiDAR point cloud into regions with uniform densities. Our algorithm is validated on coniferous forests collected in the NEW technologies for a better mountain FORest timber mobilization (NEWFOR) dataset, and deciduous forests collected in the Smithsonian Environmental Research Center (SERC) dataset. When compared to four state-of-the-art tree segmentation algorithms, our method performs best in both ecosystem types. It provides more accurate stem estimations and single tree segmentation results at various of stem and point densities. Also, our method requires only a single (Boolean) parameter, which makes it extremely easy to use and very promising for various forest analysis applications, such as biomass estimation and field inventory surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Agrawal A, Nepstad D, Chhatre A (2011) Reducing emissions from deforestation and forest degradation, vol 36. https://doi.org/10.1146/annurev-environ-042009-094508

  2. Aurenhammer F, Klein R (2000) Voronoi diagrams. Handbook of Computational Geometry 5(10):201–290

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayachit U (2015) The ParaView Guide: Updated for ParaView Version 4.3 full color version edn. Kitware, Los Alamos

  4. Ayrey E, Fraver S, Kershaw JA Jr, Kenefic LS, Hayes D, Weiskittel AR, Roth BE (2017) Layer stacking: a novel algorithm for individual forest tree segmentation from lidar point clouds. Can J Remote Sens 43(1):16–27

    Article  Google Scholar 

  5. Carter J, Schmid K, Waters K, Betzhold L, Hadley B, Mataosky R, Halleran J (2012) Lidar 101: An Introduction to lidar technology, data, and applications. National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, Charleston, South Carolina, coast noaa, 30:2015

  6. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  7. Cook BD, Middleton EM, Morton DC, McCorkel JT, Masek JG, Ranson KJ, Ly V, Montesano PM et al (2013) NASA Goddard’s LiDAR, hyperspectral and thermal (G-LiHT) airborne imager. Remote Sensing 5(8):4045–4066

    Article  Google Scholar 

  8. Dalponte M, Coomes DA (2016) Tree-centric mapping of forest carbon density from airborne laser scanning and hyperspectral data. Methods Ecol Evol 7(10):1236–1245

    Article  Google Scholar 

  9. Duncanson L, Cook B, Hurtt G, Dubayah R (2014) An efficient, multi-layered crown delineation algorithm for mapping individual tree structure across multiple ecosystems. Remote Sens Environ 154:378–386

    Article  Google Scholar 

  10. Edelsbrunner H, Kirkpatrick D, Seidel R (1983) On the shape of a set of points in the plane. IEEE Trans Inf Theory 29(4):551–559. https://doi.org/10.1109/TIT.1983.1056714

    Article  MathSciNet  MATH  Google Scholar 

  11. Ene L, Næsset E, Gobakken T (2012) Single tree detection in heterogeneous boreal forests using airborne laser scanning and area-based stem number estimates. Int J Remote Sensing 33(16):5171–5193

    Article  Google Scholar 

  12. Eysn L, Hollaus M, Lindberg E, Berger F, Monnet JM, Dalponte M, Kobal M, Pellegrini M, Lingua E, Mongus D et al (2015) A benchmark of lidar-based single tree detection methods using heterogeneous forest data from the alpine space. Forests 6(5):1721–1747

    Article  Google Scholar 

  13. Falkowski MJ, Smith AM, Gessler PE, Hudak AT, Vierling LA, Evans JS (2008) The influence of conifer forest canopy cover on the accuracy of two individual tree measurement algorithms using lidar data. Can J Remote Sens 34 (sup2):S338–S350

    Article  Google Scholar 

  14. Ferraz A, Bretar F, Jacquemoud S, Gonçalves G, Pereira L, Tomé M, Soares P (2012) 3-D mapping of a multi-layered mediterranean forest using als data. Remote Sensing of Environ 121:210–223

    Article  Google Scholar 

  15. Ferraz A, Saatchi S, Mallet C, Meyer V (2016) Lidar detection of individual tree size in tropical forests. Remote Sens Environ 183:318–333

    Article  Google Scholar 

  16. Gatziolis D, Andersen HE (2008) A guide to LIDAR data acquisition and processing for the forests of the pacific northwest. Gen Tech Rep PNW-GTR-768 Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station 32, pp 768

  17. Gougeon FA (1995) A crown-following approach to the automatic delineation of individual tree crowns in high spatial resolution aerial images. Can J Remote Sens 21(3):274–284

    Article  Google Scholar 

  18. Goutte C, Gaussier E (2005) A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: European conference on information retrieval, Springer, pp 345–359

  19. Gupta S, Weinacker H, Koch B (2010) Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave lidar data. Remote Sens 2(4):968–989

    Article  Google Scholar 

  20. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. Journal of the Royal Statistical Society Series C (Applied Statistics) 28 (1):100–108

    MATH  Google Scholar 

  21. Heinzel JN, Weinacker H, Koch B (2011) Prior-knowledge-based single-tree extraction. Int J Remote Sens 32(17):4999–5020

    Article  Google Scholar 

  22. Herrmann LR (1976) Laplacian-isoparametric grid generation scheme. J Eng Mech Div 102(5):749–907

    Article  Google Scholar 

  23. Holmgren J, Barth A, Larsson H, Olsson H, et al. (2012) Prediction of stem attributes by combining airborne laser scanning and measurements from harvesters. Silva Fenn 46(2):227–239

    Article  Google Scholar 

  24. Hyyppa J, Kelle O, Lehikoinen M, Inkinen M (2001) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans Geosci Remote Sens 39(5):969–975

    Article  Google Scholar 

  25. Jean-Romain R, David A, Florian DB, Andrew SM (2020) lidR: Airborne LiDAR Data Manipulation and Visualization for Forestry Applications. https://cran.r-project.org/package=lidR, r package version 2.2.4

  26. Joint F, Party UW (2010) Economic commission food and agriculture for europe organization. Agenda 24:25

    Google Scholar 

  27. Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F et al (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 4(4):950–974

    Article  Google Scholar 

  28. Ke Y, Quackenbush LJ (2011) A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int J Remote Sens 32(17):4725–4747

    Article  Google Scholar 

  29. Khosravipour A, Skidmore AK, Isenburg M, Wang T, Hussin YA (2014) Generating pit-free canopy height models from airborne lidar. Photogrammetric Engineering & Remote Sensing 80(9):863–872

    Article  Google Scholar 

  30. Koch B, Heyder U, Weinacker H (2006) Detection of individual tree crowns in airborne lidar data. Photogrammetric Engineering & Remote Sensing 72 (4):357–363

    Article  Google Scholar 

  31. Koch B, Kattenborn T, Straub C, Vauhkonen J (2014) Segmentation of forest to tree objects. In: Forestry Applications of Airborne Laser Scanning, Springer, pp 89–112

  32. Lahivaara T, Seppanen A, Kaipio JP, Vauhkonen J, Korhonen L, Tokola T, Maltamo M (2013) Bayesian approach to tree detection based on airborne laser scanning data. IEEE Trans Geosci Remote Sens 52(5):2690–2699

    Article  Google Scholar 

  33. Li W, Guo Q, Jakubowski MK, Kelly M (2012) A new method for segmenting individual trees from the lidar point cloud. Photogrammetric Engineering & Remote Sensing 78(1):75–84

    Article  Google Scholar 

  34. Liu T, Im J, Quackenbush LJ (2015) A novel transferable individual tree crown delineation model based on fishing net dragging and boundary classification. ISPRS J Photogramm Remote Sens 110:34–47

    Article  Google Scholar 

  35. Mangan A, Whitaker R (1999) Partitioning 3D surface meshes using watershed segmentation, vol 5

  36. Meyer F (1994) Topographic distance and watershed lines. Signal Process 38(1):113–125. https://doi.org/10.1016/0165-1684(94)90060-4

    Article  MATH  Google Scholar 

  37. Meyer F, Beucher S (1990) Morphological segmentation. J Vis Commun Image Represent 1(1):21–46. https://doi.org/10.1016/1047-3203(90)90014-M

    Article  Google Scholar 

  38. NEON (2020) Data Product DP1.10098.001, Woody plant vegetation structure. Provisional data downloaded from National Ecological Observatory Network http://data.neonscience.org on December 4, 2020. Battelle, Boulder, CO, USA NEON

  39. Packalen P, Vauhkonen J, Kallio E, Peuhkurinen J, Pitkänen J, Pippuri I, Strunk J, Maltamo M (2013) Predicting the spatial pattern of trees by airborne laser scanning. Int J Remote Sens 34(14):5154–5165

    Article  Google Scholar 

  40. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science 333(6045):988–993. https://doi.org/10.1126/science.1201609

    Article  Google Scholar 

  41. Pau G, Fuchs F, Sklyar O, Boutros M, Huber W (2010) EBImage—an R package for image processing with applications to cellular phenotypes. Bioinformatics 26(7):979–981. https://doi.org/10.1093/bioinformatics/btq046

    Article  Google Scholar 

  42. Popescu SC, Wynne RH (2004) Seeing the trees in the forest. Photogrammetric Engineering & Remote Sensing 70(5):589–604. https://doi.org/10.14358/PERS.70.5.589

    Article  Google Scholar 

  43. Popescu SC, Wynne RH, Nelson RF (2002) Estimating Plot-Level tree heights with lidar: Local filtering with a Canopy-Height based variable window size. Comput Electron Agric 37(1-3):71–95. https://doi.org/10.1016/S0168-1699(02)00121-7

    Article  Google Scholar 

  44. PROFOR FAO (2011) Framework for assessing and monitoring forest governance. Rome: Program on Forests (World Bank) and Food and Agriculture Organization of the United Nations

  45. R Core Team (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  46. Raumonen P, Casella E, Calders K, Murphy S, Åkerblom M, Kaasalainen M (2015) Massive-scale tree modelling from tls data. ISPRS Annals of the Photogrammetry. Remote Sens Spatial Inf Sci 2(3):189

    Google Scholar 

  47. Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3d segmentation of single trees exploiting full waveform lidar data, vol 64, pp 561–574

  48. Roerdink JB, Meijster A (2000) The watershed transform: Definitions, algorithms and parallelization strategies. Fund Inform 41(1,2):187–228. https://doi.org/10.3233/FI-2000-411207

    Article  MathSciNet  MATH  Google Scholar 

  49. Sačkov I, Hlasny T, Bucha T, Juriš M (2017) Integration of tree allometry rules to treetops detection and tree crowns delineation using airborne lidar data. iForest-Biogeosciences and Forestry 10(2):459

    Article  Google Scholar 

  50. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905

    Article  Google Scholar 

  51. Silva CA, Hudak AT, Vierling LA, Loudermilk EL, O’Brien JJ, Hiers JK, Jack SB, Gonzalez-Benecke C, Lee H, Falkowski MJ et al (2016) Imputation of individual longleaf pine (pinus palustris mill.) tree attributes from field and lidar data. Can J Remote Sens 42(5):554–573

    Article  Google Scholar 

  52. Sohngen B, Mendelsohn R, Sedjo R (1999) Forest management, conservation, and global timber markets. Am J Agric Econ 81(1):1–13

    Article  Google Scholar 

  53. Soille P (2003) Morphological image analysis: Principles and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  54. Sokolova M, Japkowicz N, Szpakowicz S (2006) Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Australasian joint conference on artificial intelligence, Springer, pp 1015–1021

  55. Song Y, Fellegara R, Iuricich F, De Floriani L (2021) Efficient topology-aware simplification of large triangulated terrains. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp 576–587

  56. Thuresson T (2003) Value of low-intensity field sampling in national forest inventories. UNASYLVA-FAO-, 19–23

  57. Tierny J, Favelier G, Levine JA, Gueunet C, Michaux M (2018) The Topology ToolKit. IEEE Trans Visual Comput Graphics 24(1):832–842. https://doi.org/10.1109/TVCG.2017.2743938

    Article  Google Scholar 

  58. UNFCCC (2005) Report of the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol on its First Session, Held at Montreal from 28 November to 10 December 2005. Addendum. Part Two: Action Taken by the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol at its First Session. United Nations Framework Convention on Climate Change Secretariat Bonn

  59. Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM et al (2012) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85(1):27–40

    Article  Google Scholar 

  60. Véga C, Hamrouni A, El Mokhtari S, Morel J, Bock J, Renaud JP, Bouvier M, Durrieu S (2014) PTRees: A point-based approach to forest tree extraction from lidar data. Int J Appl Earth Obs Geoinf 33:98–108

    Google Scholar 

  61. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Mach Intell 13 (6):583–598. https://doi.org/10.1109/34.87344

    Article  Google Scholar 

  62. Wilk MB, Gnanadesikan R (1968) Probability plotting methods for the analysis for the analysis of data. Biometrika 55(1):1–17

    Google Scholar 

  63. Wulder M, Niemann K, Goodenough DG (2000) Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens Environ 73(1):103–114. https://doi.org/10.1016/S0034-4257(00)00101-2

    Article  Google Scholar 

  64. Xu X, Iuricich F, De Floriani L (2020) A Persistence-Based Approach for Individual Tree Mapping. In: Proceedings of the 28th International Conference on Advances in Geographic Information Systems, pp 191–194

  65. Zhang W, Qi J, Wan P, Wang H, Xie D, Wang X, Yan G (2016) An easy-to-use airborne liDAR data filtering method based on cloth simulation. Remote Sens 8(6):501

    Article  Google Scholar 

  66. Zhen Z, Quackenbush LJ, Zhang L (2016) Trends in automatic individual tree crown detection and delineation—evolution of lidar data. Remote Sens 8 (4):333

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the US National Science Foundation under grant number IIS-1910766. We thank Dr. Ralph Dubayah, Dr. Hao Tang, Dr. Laura Duncanson, Dr. Steven Hancock and Dr. John Armston for their help and valuable comments. We also thank the reviewers and the associate editor for their time and their careful consideration of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Xu.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Availability of data and material

The experimental datasets used in this manuscript are publicly available by provided by the NEW technologies for a better mountain FORest timber mobilization (NEWFOR) program [12], NASA Goddard’s LiDAR, Hyperspectral and Thermal Imager (G-LiHT) [7], and National Science Foundation’s National Ecological Observatory Network (NEON). The experimental results reported in this manuscript are collected in the same hardware environment and with the standard process.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Tables 7 and 8 show the values used for each parameter required by the segmentation methods provided by the lidR package. For the approach by Li et al [33], a description of the thresholds Zu, dt1, and dt2 can be found in the original paper [33]. We refer an interested reader to the lidR package documentation (https://cran.r-project.org/web/packages/lidR/lidR.pdf) for a description of the parameters used by the CHM generation [29], Dalponte et al. [8], Silva et al. [51] and Watershed [37].

Table 7 Values of key parameters for each method implemented in the lidR package [25] used in the NEWFOR dataset
Table 8 Values of key parameters for each method implemented in the lidR package [25] used in the SERC dataset

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Iuricich, F. & De Floriani, L. A topology-based approach to individual tree segmentation from airborne LiDAR data. Geoinformatica 27, 759–788 (2023). https://doi.org/10.1007/s10707-023-00487-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10707-023-00487-4

Keywords

Navigation