Skip to main content
Log in

The ISS framework for time-delay systems: a survey

  • Original Article
  • Published:
Mathematics of Control, Signals, and Systems Aims and scope Submit manuscript

Abstract

At the occasion of Eduardo D. Sontag’s 70th birthday, we provide here an overview of the tools available to study input-to-state stability (ISS) and related notions for time-delay systems. After a hopefully pedagogical presentation of the main differences with respect to the finite-dimensional theory, we review basic stability concepts for input-free time-delay systems, as well as instruments to guarantee them in practice, including the Lyapunov–Krasovskii, Lyapunov–Razumikhin, and Halanay approaches. We then consider the influence of inputs through the notions of ISS, integral ISS, and input-to-output stability and provide both Lyapunov-like and solutions-based characterizations of these properties. We also show how these notions can be helpful for the stability analysis of interconnected systems, whether in cascade or in feedback form. We finally provide a list of questions which remain open until now.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Which coincides with the derivative of \(t\mapsto x(t)\) at each time t where x is differentiable.

  2. This implication implicitly imposes that the system is forward complete

References

  1. Amidy M, Crauste F, Abdllaoui A (2006) Asymptotic behavior of a discrete maturity structured system of hematopoietic stem cells dynamics with several delays. Math Model Nat Phenom 1:1–20

    Article  MathSciNet  MATH  Google Scholar 

  2. Amidy M, Crauste F, Abdllaoui A (2008) Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J Biol Syst 16:395–424

    Article  MATH  Google Scholar 

  3. Angeli D (1999) Input-to-state stability of PD-controlled robotic systems. Automatica 35:1285–1290

    Article  MathSciNet  MATH  Google Scholar 

  4. Angeli D, Ingalls B, Sontag ED, Wang Y (2004) Separation principles for input-output and integral-input-to-state stability. SIAM J Control Optim 43(1):256–276

    Article  MathSciNet  MATH  Google Scholar 

  5. Angeli D, Sontag ED (1999) Forward completeness, unboundedness observability, and their Lyapunov characterizations. Syst Control Lett 38:209–217

    Article  MathSciNet  MATH  Google Scholar 

  6. Angeli D, Sontag ED, Wang Y (2000) A characterization of integral input to state stability. IEEE Trans Autom Control 45:1082–1097

    Article  MathSciNet  MATH  Google Scholar 

  7. Angeli D, Sontag ED, Wang Y (2000) Further equivalences and semiglobal versions of integral input-to-state stability. Dyn Control J 10:127–149

    Article  MathSciNet  MATH  Google Scholar 

  8. Arcak M, Angeli D, Sontag ED (2002) A unifying integral ISS framework for stability of nonlinear cascades. SIAM J Control Optim 40:888–1904

    Article  MathSciNet  MATH  Google Scholar 

  9. Azouit R, Chaillet A, Chitour Y, Greco L (2016) Strong iISS for a class of systems under saturated feedback. Automatica 71:272–280

    Article  MathSciNet  MATH  Google Scholar 

  10. Bekiaris-Liberis N, Krstic M (2013) Nonlinear control under nonconstant delays. Advances in design and control. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  11. Boukas E-K, Liu Z-K (2002) Deterministic and stochastic time delay systems. Birkhauser, Basel

    Book  MATH  Google Scholar 

  12. Briat C (2015) Linear parameter-varying and time-delay systems: analysis, observation, filtering & control. Springer, Berlin

    Book  MATH  Google Scholar 

  13. Burton T (1985) Stability and periodic solutions of ordinary and functional differential equations. Academic Press, Cambridge

    MATH  Google Scholar 

  14. Chaillet A, Angeli D (2008) Integral input-to-state stable systems in cascade. Syst Control Lett 57(7):519–527

    Article  MathSciNet  MATH  Google Scholar 

  15. Chaillet A, Angeli D, Ito H (2014) Combining iISS and ISS with respect to small inputs: the strong iISS property. IEEE Trans Autom Control 59(9):2518–2524

    Article  MathSciNet  MATH  Google Scholar 

  16. Chaillet A, Angeli D, Ito H (2014) Strong iISS is preserved under cascade interconnection. Automatica 50(9):2424–2427

    Article  MathSciNet  MATH  Google Scholar 

  17. Chaillet A, Göksu G, Pepe P (2022) Lyapunov–Krasovskii characterizations of integral input-to-state stability of delay systems with non-strict dissipation rates. IEEE Trans Autom Control 67(7):3259–3272

    Article  MATH  Google Scholar 

  18. Chaillet A, Karafyllis I, Pepe P, Wang Y (2022) Growth conditions for global exponential stability and exp-ISS of time-delay systems under point-wise dissipation. arXiv preprint:arXiv:2202.11298

  19. Chaillet A, Orłowski J, Pepe P (2019) A relaxed Lyapunov-Krasovskii condition for global exponential stability of Lipschitz time-delay systems. In: Proceedings 58th IEEE conference on decision and control (CDC), pp 43–48

  20. Chaillet A, Pepe P, Mason P, Chitour Y (2017) Is a point-wise dissipation rate enough to show ISS for time-delay systems? In: Proceedings of the IFAC world congress, pp 14356–14361

  21. Dashkovskiy S, Efimov DV, Sontag ED (2011) Input to state stability and allied system properties. Autom Remote Control 72(8):1579–1614

    Article  MathSciNet  MATH  Google Scholar 

  22. Dashkovskiy S, Kosmykov M, Mironchenko A, Naujok L (2012) Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods. Nonlinear Anal Hybrid Syst 6(3):899–915

    Article  MathSciNet  MATH  Google Scholar 

  23. Dashkovskiy S, Naujok L (2009) Lyapunov–Razumikhin and Lyapunov–Krasovskii theorems for interconnected ISS time-delay systems. In: Proceedings of the 19th international symposium on mathematical theory of networks and systems (MTNS), pp 1–10

  24. Dashkovskiy S, Rüffer B, Wirth F (2010) Small gain theorems for large scale systems and construction of ISS Lyapunov functions. SIAM J Control Optim 48(6):4089–4118

    Article  MathSciNet  MATH  Google Scholar 

  25. Driver R (1962) Existence and stability of solutions of a delay-differential system. Arch Ration Mech Anal 10(1):401–426

    Article  MathSciNet  MATH  Google Scholar 

  26. Enciso GA, Sontag ED (2006) Global attractivity, I/O monotone small-gain theorems, and biological delay systems. Discrete Contin Dyn Syst 14:549–578

    Article  MathSciNet  MATH  Google Scholar 

  27. Erneux T (2009) Applied delay differential equations. Springer, Berlin

    MATH  Google Scholar 

  28. Fridman E (2014) Introduction to time-delay systems. Analysis and control. Springer, Berllin

    Book  MATH  Google Scholar 

  29. Göksu G, Chaillet A (2022) Integral input-to-state stable time-delay systems in cascade. Automatica 139:110175

    Article  MathSciNet  MATH  Google Scholar 

  30. Gu K, Kharitonov VL, Chen J (2012) Stability of time-delay systems. Springer, Berlin

    MATH  Google Scholar 

  31. Guiver C, Logemann H (2020) A circle criterion for strong integral input-to-state stability. Automatica 111:108641

    Article  MathSciNet  MATH  Google Scholar 

  32. Haidar I, Chitour Y, Mason P, Sigalotti M (2022) Lyapunov characterization of uniform exponential stability for nonlinear infinite-dimensional systems. IEEE Trans Autom Control 67(4):1685–1697

    Article  MathSciNet  MATH  Google Scholar 

  33. Haidar I, Pepe P (2021) Lyapunov–Krasovskii characterization of the input-to-state stability for switching retarded systems. SIAM J Control Optim 59:2997–3016

    Article  MathSciNet  MATH  Google Scholar 

  34. Halanay (1966) Differential equations; stability, oscillations, time lags. Academic Press, Cambridge

  35. Hale J, Lunel S (1993) Introduction to functional differential equations, vol 99. Springer, Berlin

    MATH  Google Scholar 

  36. Ingalls B, Sontag ED (2002) A small-gain theorem with applications to input/output systems, incremental stability, detectability, and interconnections. J Frankl Inst 339:211–229

    Article  MathSciNet  MATH  Google Scholar 

  37. Ingalls B, Sontag ED, Wang Y (2001) Generalizations of asymptotic gain characterizations of ISS to input-to-output stability. In: Proceedings American control conference, pp 2279–2284

  38. Ito H (2006) State-dependent scaling problems and stability of interconnected iISS and ISS systems. IEEE Trans Autom Control 51(10):1626–1643

    Article  MathSciNet  MATH  Google Scholar 

  39. Ito H, Jiang Z-P (2009) Necessary and sufficient small gain conditions for integral input-to-state stable systems: a Lyapunov perspective. IEEE Trans Autom Control 54:2389–2404

    Article  MathSciNet  MATH  Google Scholar 

  40. Ito H, Jiang Z-P, Dashkovskiy S, Rüffer B (2013) Robust stability of networks of iISS systems: construction of sum-type Lyapunov functions. IEEE Trans Autom Control 58(5):1192–1207

    Article  MathSciNet  MATH  Google Scholar 

  41. Ito H, Jiang Z-P, Pepe P (2013) Construction of Lyapunov–Krasovskii functionals for networks of iISS retarded systems in small-gain formulation. Automatica 49:3246–3257

    Article  MathSciNet  MATH  Google Scholar 

  42. Ito H, Pepe P, Jiang Z-P (2010) A small-gain condition for iISS of interconnected retarded systems based on Lyapunov–Krasovskii functionals. Automatica 46(10):1646–1656

    Article  MathSciNet  MATH  Google Scholar 

  43. Jacob B, Mironchenko A, Partington JR, Wirth F (2020) Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems. SIAM J Control Optim 58(5):2952–2978

    Article  MathSciNet  MATH  Google Scholar 

  44. Jankovic M (2001) Control Lyapunov–Razumikhin functions and robust stabilization of time delay systems. IEEE Trans Autom Control 46(7):1048–1060

    Article  MathSciNet  MATH  Google Scholar 

  45. Jiang Z-P, Mareels IMY, Wang Y (1996) A Lyapunov formulation of nonlinear small gain theorem for interconnected systems. Automatica 32(8):1211–1215

    Article  MathSciNet  MATH  Google Scholar 

  46. Jiang Z-P, Teel AR, Praly L (1994) Small gain theorems for ISS systems and applications. Math Control Signals Syst 7:95–120

    Article  MathSciNet  MATH  Google Scholar 

  47. Kankanamalage HG, Lin Y, Wang Y (2017) On Lyapunov–Krasovskii characterizations of input-to-output stability. In: Proceedings IFAC world congress, pp 14362–14367

  48. Kankanamalage HG, Lin Y, Wang Y (2019) Remarks on Lyapunov–Krasovskii functionals with weak decay rates. In: 2019 IEEE 15th international conference on control and automation (ICCA), pp 21–26

  49. Karafyllis I, Chaillet A (2021) Lyapunov conditions for uniform asymptotic output stability and a relaxation of Barbalat’s lemma. Automatica 132:109792

    Article  MathSciNet  MATH  Google Scholar 

  50. Karafyllis I, Jiang Z-P (2007) A small-gain theorem for a wide class of feedback systems with control applications. SIAM J Control Optim 46(4):1483–1517

    Article  MathSciNet  MATH  Google Scholar 

  51. Karafyllis I, Jiang Z-P (2010) Necessary and sufficient Lyapunov-like conditions for robust nonlinear stabilization. ESAIM Control Optim Calc Var 16(4):887–928

    Article  MathSciNet  MATH  Google Scholar 

  52. Karafyllis I, Jiang Z-P (2011) A vector small-gain theorem for general non-linear control systems. IMA J Math Control Inf 28(3):309–344

    Article  MathSciNet  MATH  Google Scholar 

  53. Karafyllis I, Jiang Z-P (2011) Stability and stabilization of nonlinear systems. Communications and control engineering series. Springer-Verlag, London

    Book  Google Scholar 

  54. Karafyllis I, Krstic M (2017) Predictor feedback for delay systems: implementations and approximations. Birkhauser, Basel

    Book  MATH  Google Scholar 

  55. Karafyllis I, Krstic M (2019) Input-to-state stability for PDEs. Springer, Berlin

    Book  MATH  Google Scholar 

  56. Karafyllis I, Malisoff M, Mazenc F, Pepe P (2016) Stabilization of nonlinear delay systems: a tutorial on recent results, volume 4 of ADD. In: Karafyllis I, Malisoff M, Mazenc F, Pepe P (eds) Chapter Recent results on nonlinear delay control systems: in honor of Miroslav Krstic. Springer, Berlin

  57. Karafyllis I, Pepe P, Chaillet A, Wang Y (2022) Is global asymptotic stability necessarily uniform for time-delay systems? arXiv preprintarXiv:2202.11298

  58. Karafyllis I, Pepe P, Jiang Z-P (2008) Global output stability for systems described by retarded functional differential equations: Lyapunov characterizations. Eur J Control 14(6):516–536

    Article  MathSciNet  MATH  Google Scholar 

  59. Karafyllis I, Pepe P, Jiang Z-P (2008) Input-to-output stability for systems described by retarded functional differential equations. Eur J Control 14(6):539–555

    Article  MathSciNet  MATH  Google Scholar 

  60. Kharitonov VL (2013) Time-delay systems: Lyapunov functionals and matrices. Birkhauser, Basel

    Book  MATH  Google Scholar 

  61. Kim AV (1999) Functional differential equations: applications of i-smooth calculus. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  62. Kolmanovskii V, Myshkis A (2013) Introduction to the theory and applications of functional differential equations. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  63. Krasovskii N (1963) Problems of the theory of stability of motion. Stanford Univ Press, Redwood City

    MATH  Google Scholar 

  64. Krichman M, Sontag ED, Wang Y (2001) Input-output-to-state stability. SIAM J Control Optim 39:1874–1928

    Article  MathSciNet  MATH  Google Scholar 

  65. Krstic M (2009) Delay compensation for nonlinear, adaptive, and PDE systems. Birkhauser, Basel

    Book  MATH  Google Scholar 

  66. Kuang Y (1993) Delay differential equations with applications in population dynamics. Academic Press, Cambridge

    MATH  Google Scholar 

  67. Lakshmikantham V, Liu X (1993) Stability analysis in terms of two measures. World Scientific, Singapore (ISBN 981-02-1389-1)

    Book  MATH  Google Scholar 

  68. Li XG, Niculescu SI, Cela A (2015) Analytic Curve frequency-sweeping stability tests for systems with commensurate delays. Springer, Berlin

    Book  MATH  Google Scholar 

  69. Lin Y, Wang Y (2018) Lyapunov descriptions of integral-input-to-state-stability for systems with delays. In: Proceedings of the IEEE conference on decision and control, Miami, pp 3944–3949

  70. Liu B, Liu X, Teo KL, Wang Q (2006) Razumikhin-type theorems on exponential stability of impulsive delay systems. IMA J Appl Math 71:47–61

    Article  MathSciNet  MATH  Google Scholar 

  71. Liu J, French M (2013) A generalisation of the nonlinear small-gain theorem for systems with abstract initial conditions. In: Proceedings of the European control conference (ECC), Zurich, Switzerland, pp 1699–1704

  72. Liu K, Fridman E, Xia Y (2021) Networked control under communications constraints: a time-delay approach. Springer, Berlin

    Google Scholar 

  73. Mahmoud MS (2000) Robust control and filtering for time-delay systems. Marcel-Dekker, New York

    MATH  Google Scholar 

  74. Mazenc F, Malisoff M, Krstic M (2022) Vector extensions of Halanay’s inequality. IEEE Trans Autom Control 67(3):1453–1459

    Article  MathSciNet  MATH  Google Scholar 

  75. Michiels W, Niculescu SI (2014) Stability and stabilization of time-delay systems: an eigenvalue-based approach. SIAM-Advances in Design and Control, Philadelphia

    MATH  Google Scholar 

  76. Mironchenko A (2016) Local input-to-state stability: characterizations and counterexamples. Syst Control Lett 87:23–28

    Article  MathSciNet  MATH  Google Scholar 

  77. Mironchenko A (2021) Non-uniform ISS small-gain theorem for infinite networks. IMS J Math Control Inf 38:1029–1045

    Article  MathSciNet  MATH  Google Scholar 

  78. Mironchenko A (2021) Small gain theorems for general networks of heterogeneous infinite-dimensional systems. SIAM J Control Optim 59:1393–1419

    Article  MathSciNet  MATH  Google Scholar 

  79. Mironchenko A (2022) Lyapunov criteria for robust forward completeness of distributed parameter systems

  80. Mironchenko A, Ito H (2014) Integral input-to-state stability of bilinear infinite-dimensional systems. In: Proceedings of the IEEE conference on decision and control, pp 3155–3160

  81. Mironchenko A, Kawan C, Glück J (2021) Nonlinear small-gain theorem for input-to-state stability of inifinite interconnections. Math Control Signals Syst 33:573–615

    Article  MATH  Google Scholar 

  82. Mironchenko A, Prieur C (2020) Input-to-state stability of infinite-dimensional systems: recent results and open questions. SIAM Review 62(3):529–614

    Article  MathSciNet  MATH  Google Scholar 

  83. Mironchenko A, Wirth F (2017) Input-to-state stability of time-delay systems: criteria and open problems. In: Proceedings of the 56th IEEE conference on decision and control, pp 3719–3724

  84. Mironchenko A, Wirth F (2018) Characterizations of input-to-state stability for infinite-dimensional systems. IEEE Trans Autom Control 63(6):1692–1707

    Article  MathSciNet  MATH  Google Scholar 

  85. Nawarathma RHH, Lin Y, Wang Y (2020) On integral input-to-output stability properties. In: Proceedings of the 59th IEEE conference on decision and control, pp 6285–6290

  86. Nawarathma RHH, Lin Y, Wang Y (2021) Remarks on Lyapunov–Karasovskii functionals for integral input-to-output stability properties. In: IFAC conference paper archive, pp 335–340

  87. Niculescu SI (2001) Delay effects on stability: a robust control approach, vol 269. Springer, Berlin

    MATH  Google Scholar 

  88. Normey-Rico J, Camacho E (2007) Control of dead-time processes. Springer, Berlin

    MATH  Google Scholar 

  89. Orłowski J, Chaillet A, Destexhe A, Sigalotti M (2022) Adaptive control of Lipschitz time-delay systems by sigma modification with application to neuronal population dynamics. Syst Control Lett 159:105082

    Article  MathSciNet  MATH  Google Scholar 

  90. Orłowski J, Chaillet A, Sigalotti M (2020) Counterexample to a Lyapunov condition for uniform asymptotic partial stability. IEEE Control Syst Lett 4(2):397–401

    Article  MathSciNet  Google Scholar 

  91. Panteley E, Loría A (1998) On global uniform asymptotic stability of non linear time-varying non autonomous systems in cascade. Syst Control Lett 33(2):131–138

    Article  MATH  Google Scholar 

  92. Panteley E, Loría A (2001) Growth rate conditions for stability of cascaded time-varying systems. Automatica 37(3):453–460

    Article  MathSciNet  MATH  Google Scholar 

  93. Pepe P (2007) On Liapunov–Krasovskii functionals under caratheodory conditions. Automatica 43(4):701–706

    Article  MathSciNet  MATH  Google Scholar 

  94. Pepe P (2007) The problem of the absolute continuity for Lyapunov–Krasovskii functionals. IEEE Trans Autom Control 52(5):953–957

    Article  MathSciNet  MATH  Google Scholar 

  95. Pepe P (2022) A nonlinear version of Halanay inequality for the uniform convergence to the origin. Math Control Relat Fields 12(3):789–811

    Article  MathSciNet  MATH  Google Scholar 

  96. Pepe P, Jiang Z-P (2006) A Lyapunov–Krasovskii methodology for ISS and iISS of time-delay systems. Syst Control Lett 55(12):1006–1014

    Article  MathSciNet  MATH  Google Scholar 

  97. Pepe P, Karafyllis I (2013) Converse Lyapunov–Krasovskii theorems for systems described by neutral functional differential equations in Hale’s form. Int J Control 86(2):232–243

    Article  MathSciNet  MATH  Google Scholar 

  98. Palumbo P, Pepe P, Panunzi P, De Gaetano A (2013) Observer-based closed-loop control for the glucose-insulin system: local Input-to-State Stability with respect to unknown meal disturbances. In: Proceedings of the American Control Conference, pp 1751–1756

  99. Polushin I, Tayebi A, Marquez H (2006) Control schemes for stable teleoperation with communication delay based on IOS small gain theorem. Automatica 42:905–915

    Article  MathSciNet  MATH  Google Scholar 

  100. Praly L, Wang Y (1996) Stabilization in spite of matched unmodelled dynamics and an equivalent definition of input-to-state stability. Math Control Signals Syst 9:1–33

    Article  MATH  Google Scholar 

  101. Razumikhin BS (1956) On the stability of systems with a delay. Prikl Mat Meh (in Russian) 20:500–512

    Google Scholar 

  102. Seibert P, Suárez R (1990) Global stabilization of nonlinear cascaded systems. Syst Control Lett 14:347–352

    Article  MATH  Google Scholar 

  103. Sontag ED (1989) Smooth stabilization implies coprime factorization. IEEE Trans Autom Control 34(4):435–443

    Article  MathSciNet  MATH  Google Scholar 

  104. Sontag ED (1998) Comments on integral variants of ISS. Syst Control Lett 34:93–100

    Article  MathSciNet  MATH  Google Scholar 

  105. Sontag ED (2000) Lecture notes in control and information sciences. In: Isidori A, Lamnabhi-Lagarrigue F, Respondek W (eds) Chapter The ISS philosophy as a unifying framework for stability-like behavior. Springer-Verlag, Berlin, pp 443–468

    MATH  Google Scholar 

  106. Sontag ED (2008) Input to state stability: basic concepts and results. Lecture Notes in Mathematics. Springer-Verlag, Berlin, pp 163–220

    MATH  Google Scholar 

  107. Sontag ED, Krichman M (2003) An example of a GAS system which can be destabilized by an integrable perturbation. IEEE Trans Autom Control 48(6):1046–1049

    Article  MathSciNet  MATH  Google Scholar 

  108. Sontag ED, Teel AR (1995) Changing supply functions in input-to-state stable systems. IEEE Trans Autom Control 40(8):1476–1478

    Article  MathSciNet  MATH  Google Scholar 

  109. Sontag ED, Wang Y (1995) On characterizations of the input-to-state stability property. Syst Control Lett 24:351–359

    Article  MathSciNet  MATH  Google Scholar 

  110. Sontag ED, Wang Y (1996) New characterizations of input-to-state stability. IEEE Trans Autom Control 41:1283–1294

    Article  MathSciNet  MATH  Google Scholar 

  111. Sontag ED, Wang Y (1997) Output-to-state stability and detectability of nonlinear systems. Syst Control Lett 30:177–183

    Article  MathSciNet  MATH  Google Scholar 

  112. Sontag ED, Wang Y (1999) Notions of input-to-output stability. Syst Control Lett 38:235–248

    Article  MathSciNet  MATH  Google Scholar 

  113. Sontag ED, Wang Y (2001) Lyapunov characterizations of input to output stability. SIAM J Control Optim 39:226–249

    Article  MathSciNet  MATH  Google Scholar 

  114. Teel AR (1998) Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans Autom Control 43(7):960–964

    Article  MathSciNet  MATH  Google Scholar 

  115. Teel AR, Hespanha J (2004) Examples of GES systems that can be driven to infinity by arbitrarily small additive decaying exponentials. IEEE Trans Autom Control 49:1407–1410

    Article  MathSciNet  MATH  Google Scholar 

  116. Teel AR, Praly L (2000) A smooth Lyapunov function from a class-KL estimate involving two positive semi-definite functions. ESAIM: COCV 5:313–367

    MATH  Google Scholar 

  117. Tiwari S, Wang Y, Jiang Z (2012) Nonlinear small-gain theorems for large-scale time-delay systems. Dyn Contin Discrete Impuls Syst Ser A 19:27–63

    MathSciNet  MATH  Google Scholar 

  118. Tiwari S, Wang Y, Jiang Z (2012) Remarks on integral-ISS for systems with delays. In: World congress on intelligent control and automation (WCICA)

  119. Vorotnikov VI (1993) Stability and stabilization of motion: research approaches, results, distinctive characteristics. Autom Telemekh 54(3):339–397

    MATH  Google Scholar 

  120. Wang Q, Liu X (2005) Exponential stability for impulsive delay differential equations by Razumikhin method. J Math Anal Appl 309(2):462–473

    Article  MathSciNet  MATH  Google Scholar 

  121. Xu X, Liu L, Feng G (2020) On Lipschitz conditions of infinite dimensional systems. Automatica 117:108947

    Article  MathSciNet  MATH  Google Scholar 

  122. Yeganefar N, Pepe P, Dambrine M (2008) Input-to-state stability of time-delay systems: a link with exponential stability. IEEE Trans Autom Control 53(6):1526–1531

    Article  MathSciNet  MATH  Google Scholar 

  123. Zhang H, Xie L (2007) Control and estimation of systems with input/output delays. Springer, Berlin

    MATH  Google Scholar 

  124. Zhong Q-C (2006) Robust control of time-delay systems. Springer, Berlin

    MATH  Google Scholar 

  125. Zhu J, Qi T, Ma D, Chen J (2018) Limits of stability and stabilization of time-delay systems: a small-gain approach. Springer, Berlin

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to warmly thank Gökhan Göksu and Epiphane Loko for their careful reading of this survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Chaillet.

Ethics declarations

Conflict of interest

The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

This paper is dedicated to Eduardo Sontag on the occasion of his 70th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This survey paper is dedicated to E.D. Sontag, at the occasion of his 70th birthday, as a humble testimony of his fundamental and breakthrough contributions to the field of stability analysis of nonlinear systems and as a token of his inspiring work

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaillet, A., Karafyllis, I., Pepe, P. et al. The ISS framework for time-delay systems: a survey. Math. Control Signals Syst. 35, 237–306 (2023). https://doi.org/10.1007/s00498-023-00341-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00498-023-00341-w

Keywords

Navigation