Skip to main content
Log in

Rheological characterization of cellulose nanocrystal-laden self-healable polyvinyl alcohol hydrogels

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

Among various nanomaterials, cellulose nanocrystals (CNCs) are regarded as the most suitable reinforcing fillers for hydrogels owing to their high dispersibility in water and favorable hydrogen bonding with water-dispersible polymers. Herein, CNC-laden polyvinyl alcohol (PVA)/borax (P/CNC) hydrogels were prepared by solution mixing, and their mechanical and rheological properties were investigated in terms of CNC loading of 0–60 w/w%. PVA/borax hydrogels are known to exhibit self-healing ability based on the dynamic nature of the borate–diol complex, which is dependent on the rheological response because the rheological chain dynamics dominantly affect the self-healing process. In mechanical testing, the Young’s modulus of the P/CNC hydrogels sharply increased above 40 w/w% CNC, indicating that the stiffening effect of CNC was enhanced above the critical loading. From a rheological perspective, the increases in the viscosity and storage modulus were further accelerated above 40 w/w%. In particular, the chain flow relaxation time (τf), a quantitative parameter closely related to the self-healing performance, was observed for the P/CNC hydrogels with CNC amounts of 0−40 w/w% (1.6−97.3 s); whereas, there is no τf for the P/CNC hydrogels with 45−60 w/w% CNC within a reasonable time scale we observed at 25 °C. Consequently, the incorporation of less than 40 w/w% CNCs affords high mechanical stiffness while maintaining self-healing ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Nanoscale 49:1993–2007

    CAS  Google Scholar 

  2. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1:1–17

    Article  Google Scholar 

  3. Zhang YS, Khademhosseini A (2017) Advances in engineering hydrogels. Science 356:eaaf3627

    Article  Google Scholar 

  4. Shin SH, Eom Y, Lee ES, Hwang SY, Oh DX, Park J (2020) Malleable hydrogel embedded with micellar cargo-expellers as a prompt transdermal patch. Adv Healthc Mater 9:2000876

    Article  CAS  Google Scholar 

  5. Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ (2018) Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater 30:1801541

    Article  Google Scholar 

  6. Sun JY, Keplinger C, Whitesides GM, Suo Z (2014) Ionic skin. Adv Mater 26:7608–7614

    Article  CAS  Google Scholar 

  7. Yu B, Kang S-Y, Akthakul A, Ramadurai N, Pilkenton M, Patel A, Nashat A, Anderson DG, Sakamoto FH, Gilchrest BA (2016) An elastic second skin. Nat Mater 15:911–918

    Article  CAS  Google Scholar 

  8. Liang S, Zhang Y, Wang H, Xu Z, Chen J, Bao R, Tan B, Cui Y, Fan G, Wang W (2018) Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv Mater 30:1704235

    Article  Google Scholar 

  9. Migdadi EM, Courtenay AJ, Tekko IA, McCrudden MT, Kearney M-C, McAlister E, McCarthy HO, Donnelly RF (2018) Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J Control Release 285:142–151

    Article  CAS  Google Scholar 

  10. Yi H, Lee SH, Seong M, Kwak MK, Jeong HE (2018) Bioinspired reversible hydrogel adhesives for wet and underwater surfaces. J Mat Chem B 6:8064–8070

    Article  CAS  Google Scholar 

  11. Yu Y, Yuk H, Parada GA, Wu Y, Liu X, Nabzdyk CS, Youcef-Toumi K, Zang J, Zhao X (2019) Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv Mater 31:1807101

    Article  Google Scholar 

  12. Scheiner M, Dickens TJ, Okoli O (2016) Progress towards self-healing polymers for composite structural applications. Nanoscale 83:260–282

    CAS  Google Scholar 

  13. Taylor DL (2016) M. in het Panhuis. Adv Mater 28:9060–9093

    Article  CAS  Google Scholar 

  14. Wu Y, Wang L, Zhao X, Hou S, Guo B, Ma PX (2016) Self-healing supramolecular bioelastomers with shape memory property as a multifunctional platform for biomedical applications via modular assembly. Biomaterials 104:18–31

    Article  CAS  Google Scholar 

  15. Mukherjee S, Hill MR, Sumerlin BS (2015) Self-healing hydrogels containing reversible oxime crosslinks. Soft Matter 11:6152–6161

    Article  CAS  Google Scholar 

  16. Chang R, An H, Li X, Zhou R, Qin J, Tian Y, Deng K (2017) Self-healable polymer gels with multi-responsiveness of gel–sol–gel transition and degradability. Polym Chem 8:1263–1271

    Article  CAS  Google Scholar 

  17. Lei Z, Wang Q, Sun S, Zhu W, Wu P (2017) A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv Mater 29:1700321

    Article  Google Scholar 

  18. Lu B, Lin F, Jiang X, Cheng J, Lu Q, Song J, Chen C, Huang B (2017) One-pot assembly of microfibrillated cellulose reinforced PVA–borax hydrogels with self-healing and pH-responsive properties. ACS Sustain Chem Eng 5:948–956

    Article  CAS  Google Scholar 

  19. Barthel MJ, Rudolph T, Teichler A, Paulus RM, Vitz J, Hoeppener S, Hager MD, Schacher FH, Schubert US (2013) Self-healing materials via reversible crosslinking of poly (ethylene oxide)-block-poly (furfuryl glycidyl ether)(peo-b-pfge) block copolymer films. Adv Funct Mater 23:4921–4932

    Article  CAS  Google Scholar 

  20. Apostolides DE, Patrickios CS, Leontidis E, Kushnir M, Wesdemiotis C (2014) Synthesis and characterization of reversible and self-healable networks based on acylhydrazone groups. Polym Int 63:1558–1565

    Article  CAS  Google Scholar 

  21. Rong MZ, Zhang MQ (2014) Self-healing polyurethane elastomer with thermally reversible alkoxyamines as crosslinkages. Nanoscale 55:1782–1791

    Google Scholar 

  22. Aguirresarobe R, Martin L, Fernandez-Berridi M, Irusta L (2017) Autonomic healable waterborne organic-inorganic polyurethane hybrids based on aromatic disulfide moieties. Express Polym Lett 11:266

    Article  CAS  Google Scholar 

  23. Zou W, Dong J, Luo Y, Zhao Q, Xie T (2017) Dynamic covalent polymer networks: from old chemistry to modern day innovations. Adv Mater 29:1606100

    Article  Google Scholar 

  24. Das A, Sallat A, Böhme F, Suckow M, Basu D, Wießner S, Stöckelhuber KW, Voit B, Heinrich G (2015) Ionic modification turns commercial rubber into a self-healing material. ACS Appl Mater Interfaces 7:20623–20630

    Article  CAS  Google Scholar 

  25. Chen S, Binder WH (2016) Dynamic ordering and phase segregation in hydrogen-bonded polymers. Accounts Chem Res 49:1409–1420

    Article  CAS  Google Scholar 

  26. Haering M, Díaz DD (2016) Supramolecular metallogels with bulk self-healing properties prepared by in situ metal complexation. Chem Commun 52:13068–13081

    Article  CAS  Google Scholar 

  27. Mei JF, Jia XY, Lai JC, Sun Y, Li CH, Wu JH, Cao Y, You XZ, Bao Z (2016) A highly stretchable and autonomous self-healing polymer based on combination of pt··· pt and π–π interactions. Macromol Rapid Commun 37:1667–1675

    Article  CAS  Google Scholar 

  28. Cho S, Hwang SY, Oh DX, Park J (2021) Recent progress in self-healing polymers and hydrogels based on reversible dynamic B-O bonds: boronic/boronate esters, borax, and benzoxaborole. J Mater Chem A 9:14630–14655

    Article  CAS  Google Scholar 

  29. Song Y, Kim B, Park JD, Lee D (2023) Probing metal-carboxylate interactions in cellulose nanofibrils-based hydrogels using nonlinear oscillatory rheology. Carbohydr Polym 300:120262

    Article  CAS  Google Scholar 

  30. Kim HJ, Jeong JH, Choi YH, Eom Y (2021) Review on cellulose nanocrystal-reinforced polymer nanocomposites: processing, properties, and rheology. Korea-Aust Rheol J 33:165–185

    Article  Google Scholar 

  31. Kim HJ, Choi YH, Jeong JH, Kim H, Yang HS, Hwang SY, Koo JM, Eom Y (2021) Rheological percolation of cellulose nanocrystals in biodegradable poly (butylene succinate) nanocomposites: a novel approach for tailoring the mechanical and hydrolytic properties. Macromol Res 29:720–726

    Article  CAS  Google Scholar 

  32. Song HY, Park SY, Kim S, Youn HJ, Hyun K (2022) Linear and nonlinear oscillatory rheology of chemically pretreated and non-pretreated cellulose nanofiber suspensions. Carbohydr Polym 275:118765

    Article  CAS  Google Scholar 

  33. Park S-A, Eom Y, Jeon H, Koo JM, Lee ES, Jegal J, Hwang SY, Oh DX, Park J (2019) Preparation of synergistically reinforced transparent bio-polycarbonate nanocomposites with highly dispersed cellulose nanocrystals. Green Chem 21:5212–5221

    Article  CAS  Google Scholar 

  34. Hao LT, Eom Y, Tran TH, Koo JM, Jegal J, Hwang SY, Oh DX, Park J (2020) Rediscovery of nylon upgraded by interactive biorenewable nano-fillers. Nanoscale 12:2393–2405

    Article  CAS  Google Scholar 

  35. Kim H, Jeon H, Shin G, Lee M, Jegal J, Hwang SY, Oh DX, Koo JM, Eom Y, Park J (2021) Biodegradable nanocomposite of poly (ester-co-carbonate) and cellulose nanocrystals for tough tear-resistant disposable bags. Green Chem 23:2293–2299

    Article  CAS  Google Scholar 

  36. Ju Y, Ha J, Song Y, Lee D (2021) Revealing the enhanced structural recovery and gelation mechanisms of cation-induced cellulose nanofibrils composite hydrogels. Carbohydr Polym 272:118515

    Article  CAS  Google Scholar 

  37. Liu X, Yang K, Chang M, Wang X, Ren J (2020) Fabrication of cellulose nanocrystal reinforced nanocomposite hydrogel with self-healing properties. Carbohydr Polym 240:116289

    Article  CAS  Google Scholar 

  38. Song K, Zhu W, Li X, Yu Z (2020) A novel mechanical robust, self-healing and shape memory hydrogel based on PVA reinforced by cellulose nanocrystal. Mater Lett 260:126884

    Article  CAS  Google Scholar 

  39. Tang J, Javaid MU, Pan C, Yu G, Berry RM, Tam KC (2020) Self-healing stimuli-responsive cellulose nanocrystal hydrogels. Carbohydr Polym 229:115486

    Article  CAS  Google Scholar 

  40. Shin M, Shin S-H, Lee M, Kim HJ, Jeong JH, Choi YH, Oh DX, Park J, Jeon H, Eom Y (2021) Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. Polymer 229:123969

    Article  CAS  Google Scholar 

  41. Son SM, Lee J-E, Jeon J, Lim SI, Kwon HT, Eom Y, Chae HG (2021) Preparation of high-performance polyethersulfone/cellulose nanocrystal nanocomposite fibers via dry-jet wet spinning. Macromol Res 29:33–39

    Article  CAS  Google Scholar 

  42. Lee SH, Kim SY, Salehiyan R, Hyun K (2021) Effects of silica nanoparticles on the rheoloigcal properties and morphologies of polyvinyl alcohol/silver nanowidre suspensions. Korea-Aust Rheol J 33:321–331

    Article  Google Scholar 

  43. Kim M, Hyun K (2021) Characterization of polyethylene/silica nanocomposites using different rheological analyses. Korea-Aust Rheol J 33:25–36

    Article  Google Scholar 

  44. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  Google Scholar 

  45. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. ACS Sustain Chem Eng 52:791–806

    CAS  Google Scholar 

  46. Lee J-E, Kim YE, Lee G-H, Kim MJ, Eom Y, Chae HG (2020) The effect of cellulose nanocrystals (CNCs) on the microstructure of amorphous polyetherimide (PEI)-based nanocomposite fibers and its correlation with the mechanical properties. Compos Sci Technol 200:108452

    Article  CAS  Google Scholar 

  47. Tan L, Pan D, Pan N (2008) Gelation behavior of polyacrylonitrile solution in relation to aging process and gel concentration. Nanoscale 49:5676–5682

    CAS  Google Scholar 

  48. Yoon JH, Kim S-M, Eom Y, Koo JM, Cho H-W, Lee TJ, Lee KG, Park HJ, Kim YK, Yoo H-J (2019) Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor. ACS Appl Mater Interfaces 11:46165–46175

    Article  CAS  Google Scholar 

  49. Yanagisawa Y, Nan Y, Okuro K, Aida T (2018) Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359:72–76

    Article  CAS  Google Scholar 

  50. Tamate R, Hashimoto K, Horii T, Hirasawa M, Li X, Shibayama M, Watanabe M (2018) Self-healing micellar ion gels based on multiple hydrogen bonding. Adv Mater 30:1802792

    Article  Google Scholar 

  51. Li C, Duan L, Tian Z, Liu W, Li G, Huang X (2015) Rheological behavior of acylated pepsin-solubilized collagen solutions: effects of concentration. Korea-Aust Rheol J 27:287–295

    Article  Google Scholar 

  52. Kim J-H, Lee S, Kim BC, Shin B-S, Jeon J-Y, Chae DW (2016) Effect of VA and MWNT contents on the rheological and physical properties of EVA. Korea-Aust Rheol J 28:41–49

    Article  Google Scholar 

  53. Lee GW, Kim SH, Lee DY, Lee K-Y, Chun B, Jung HW (2022) Effect of solution pH on the microstructural and rheological properties in boehmite suspensions. Korea-Aust Rheol J. https://doi.org/10.1007/s13367-022-00046-7

    Article  Google Scholar 

  54. Eom Y, Kim S-M, Lee M, Jeon H, Park J, Lee ES, Hwang SY, Park J, Oh DX (2021) Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat Commun 12:621

    Article  CAS  Google Scholar 

  55. Xia NN, Xiong XM, Rong MZ, Zhang MQ, Kong F (2017) Self-healing of polymer in acidic water toward strength restoration through the synergistic effect of hydrophilic and hydrophobic interactions. ACS Appl Mater Interfaces 9:37300–37309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a Research Grant of Pukyong National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngho Eom.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Kim, H.J., Lee, Y. et al. Rheological characterization of cellulose nanocrystal-laden self-healable polyvinyl alcohol hydrogels. Korea-Aust. Rheol. J. 35, 31–38 (2023). https://doi.org/10.1007/s13367-023-00049-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00049-y

Keywords

Navigation