Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years

Author(s): Yiyu Hu, Yanqing Sun, Qian-Hao Zhu, Longjiang Fan and Jianhua Li*

Volume 23, Issue 6, 2022

Published on: 13 December, 2022

Page: [369 - 384] Pages: 16

DOI: 10.2174/1389202924666221201140603

Price: $65

Abstract

The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.

Keywords: Poaceae, chloroplast genome, genome structural features, sequencing history, phylogeny, conservation.

Next »
Graphical Abstract
[1]
Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa, 2016, 261(3), 201-217.
[http://dx.doi.org/10.11646/phytotaxa.261.3.1]
[2]
Hodkinson, T.R.; Parnell, J.A.N. Introduction to the systematics of species rich groups. IN: Reconstructing the tree of life: Taxonomy and systematics of species rich taxa. Taylor & Francis group; Oxfordshire: UK, 2007.
[3]
Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Zuloaga, F.O.; Judziewicz, E.J.; Filgueiras, T.S.; Davis, J.I.; Morrone, O. A worldwide phylogenetic classification of the Poaceae (Gramineae). J. Syst. Evol., 2015, 53(2), 117-137.
[http://dx.doi.org/10.1111/jse.12150]
[4]
Hodkinson, T.R. Evolution and taxonomy of the grasses (Poaceae): A model family for the study of Species-Rich groups. Annu. Plant Rev., 2018, 1, 1-39.
[http://dx.doi.org/10.1002/9781119312994.apr0622]
[5]
Huang, W.; Zhang, L.; Columbus, J.T.; Hu, Y.; Zhao, Y.; Tang, L.; Guo, Z.; Chen, W.; McKain, M.; Bartlett, M.; Huang, C.H.; Li, D.Z.; Ge, S.; Ma, H. A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C4 photosynthesis. Mol. Plant, 2022, 15(4), 755-777.
[http://dx.doi.org/10.1016/j.molp.2022.01.015] [PMID: 35093593]
[6]
Zhang, L.; Zhu, X.; Zhao, Y.; Guo, J.; Zhang, T.; Huang, W.; Huang, J.; Hu, Y.; Huang, C.H.; Ma, H. Phylotranscriptomics resolves the phylogeny of pooideae and uncovers factors for their adaptive evolution. Mol. Biol. Evol., 2022, 39(2), msac026.
[http://dx.doi.org/10.1093/molbev/msac026] [PMID: 35134207]
[7]
Hodkinson, T.R.; Klaas, M.; Jones, M.B.; Prickett, R.; Barth, S. Miscanthus: a case study for the utilization of natural genetic variation. Plant Genet. Resour., 2015, 13(3), 219-237.
[http://dx.doi.org/10.1017/S147926211400094X]
[8]
Jones, M.B.; Finnan, J.; Hodkinson, T.R. Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. Glob. Change Biol. Bioenergy, 2015, 7(2), 375-385.
[http://dx.doi.org/10.1111/gcbb.12203]
[9]
Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol., 2016, 17(1), 134.
[http://dx.doi.org/10.1186/s13059-016-1004-2] [PMID: 27339192]
[10]
Smith, S.A.; Donoghue, M.J. Rates of molecular evolution are linked to life history in flowering plants. Science, 2008, 322(5898), 86-89.
[http://dx.doi.org/10.1126/science.1163197] [PMID: 18832643]
[11]
Hitchcock, A.S. New species, and changes in nomenclature, of grasses of the United States. Am. J. Bot., 1934, 21(3), 127-139.
[http://dx.doi.org/10.1002/j.1537-2197.1934.tb04953.x]
[12]
Peterson, P.M.; Davidse, G.; Judziewicz, E.J.; Zuloaga, F.O.; Filgueiras, T.S.; Morrone, O. Catalogue of new world grasses (Poaceae): IV. Subfamily Pooideae. Contrib. U.S. Natl. Herb., 2003, 48, 1-730.
[13]
Tzvelev, N.N. The system of grasses (Poaceae) and their evolution. Bot. Rev., 1989, 55(3), 141-203.
[http://dx.doi.org/10.1007/BF02858328]
[14]
Zuloaga, F.O.; Morrone, O.; Davidse, G.; Filgueiras, T.S.; Peterson, P.M.; Soreng, R.J.; Judziewicz, E.J. Catalogue of new world grasses (Poaceae): III. Subfamilies panicoideae, aristidoideae, arundinoideae, and danthonioideae. Contrib. U.S. Natl. Herb., 2003, 46, 1-662.
[15]
Soreng, R.J.; Peterson, P.M.; Romaschenko, K.; Davidse, G.; Teisher, J.K.; Clark, L.G.; Barberá, P.; Gillespie, L.J.; Zuloaga, F.O. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol., 2017, 55(4), 259-290.
[http://dx.doi.org/10.1111/jse.12262]
[16]
Sage, R.F. The evolution of C 4 photosynthesis. New Phytol., 2004, 161(2), 341-370.
[http://dx.doi.org/10.1111/j.1469-8137.2004.00974.x] [PMID: 33873498]
[17]
Davis, J.I.; Soreng, R.J. Phylogenetic structure in the grass family (Poaceae) as inferred from chloroplast DNA restriction site variation. Am. J. Bot., 1993, 80(12), 1444-1454.
[http://dx.doi.org/10.1002/j.1537-2197.1993.tb15390.x]
[18]
Doebley, J.; Bothmer, R.; Larson, S. Chloroplast dna variation and the phylogeny of hordeum (poaceae). Am. J. Bot., 1992, 79(5), 576-584.
[http://dx.doi.org/10.1002/j.1537-2197.1992.tb14595.x]
[19]
Darbyshire, S.J.; Warwick, S.I. Phylogeny of North American Festuca (Poaceae) and related genera using chloroplast DNA restriction site variation. Can. J. Bot., 1992, 70(12), 2415-2429.
[http://dx.doi.org/10.1139/b92-300]
[20]
Larson, S.R.; Doebley, J. Restriction site variation in the chloroplast genome of tripsacum (poaceae) - phylogeny and rates of sequence evolution. Syst. Bot., 1994, 19(1), 21-34.
[http://dx.doi.org/10.2307/2419709]
[21]
Hsiao, C.; Chatterton, N.J.; Asay, K.H.; Jensen, K.B. Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theor. Appl. Genet., 1995, 90(3-4), 389-398.
[http://dx.doi.org/10.1007/BF00221981] [PMID: 24173929]
[22]
Hsiao, C.; Chatterton, N.J.; Asay, K.H.; Jensen, K.B. Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. Genome, 1994, 37(1), 112-120.
[http://dx.doi.org/10.1139/g94-014] [PMID: 8181731]
[23]
Stammers, M.; Harris, J.; Evans, G.M.; Hayward, M.D.; Forster, J.W. Use of random PCR (RAPD) technology to analyse phylogenetic relationships in the Lolium/Festuca complex. Heredity, 1995, 74(1), 19-27.
[http://dx.doi.org/10.1038/hdy.1995.3] [PMID: 7852097]
[24]
Wang, G.Z.; Miyashita, N.T.; Tsunewaki, K. Plasmon analyses of Triticum (wheat) and Aegilops: PCR–single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. Proc. Natl. Acad. Sci. USA, 1997, 94(26), 14570-14577.
[http://dx.doi.org/10.1073/pnas.94.26.14570] [PMID: 9405654]
[25]
Group, G.P.W.; Barker, N.P.; Clark, L.G.; Davis, J.I.; Duvall, M.R.; Guala, G.F.; Hsiao, C.; Kellogg, E.A.; Linder, H.P.; Mathews, S.Y.; Simmons, M.P.; Soreng, R.J.; Spangler, R.E. Phylogeny and subfamilial classification of the grasses (Poaceae). Ann. Mo. Bot. Gard., 2001, 88(3), 373-457.
[http://dx.doi.org/10.2307/3298585]
[26]
Young, H.A.; Lanzatella, C.L.; Sarath, G.; Tobias, C.M. Chloroplast genome variation in upland and lowland switchgrass. PLoS One, 2011, 6(8), e23980.
[http://dx.doi.org/10.1371/journal.pone.0023980] [PMID: 21887356]
[27]
Wu, Z.Q.; Ge, S. The phylogeny of the BEP clade in grasses revisited: Evidence from the whole-genome sequences of chloroplasts. Mol. Phylogenet. Evol., 2012, 62(1), 573-578.
[http://dx.doi.org/10.1016/j.ympev.2011.10.019] [PMID: 22093967]
[28]
Saarela, J.M.; Burke, S.V.; Wysocki, W.P.; Barrett, M.D.; Clark, L.G.; Craine, J.M.; Peterson, P.M.; Soreng, R.J.; Vorontsova, M.S.; Duvall, M.R.A. 250 plastome phylogeny of the grass family (Poaceae): topological support under different data partitions. PeerJ, 2018, 6, e4299.
[http://dx.doi.org/10.7717/peerj.4299] [PMID: 29416954]
[29]
Ye, C.Y.; Lin, Z.; Li, G.; Wang, Y.Y.; Qiu, J.; Fu, F.; Zhang, H.; Chen, L.; Ye, S.; Song, W.; Jin, G.; Zhu, J.; Lu, Y.; Guo, L.; Fan, L. Echinochloa chloroplast genomes: insights into the evolution and taxonomic identification of two weedy species. PLoS One, 2014, 9(11), e113657.
[http://dx.doi.org/10.1371/journal.pone.0113657] [PMID: 25427255]
[30]
Saski, C.; Lee, S.B.; Fjellheim, S.; Guda, C.; Jansen, R.K.; Luo, H.; Tomkins, J.; Rognli, O.A.; Daniell, H.; Clarke, J.L. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. Theor. Appl. Genet., 2007, 115(4), 571-590.
[http://dx.doi.org/10.1007/s00122-007-0567-4] [PMID: 17534593]
[31]
Cui, G.; Wang, C.; Wei, X.; Wang, H.; Wang, X.; Zhu, X.; Li, J.; Yang, H.; Duan, H. Complete chloroplast genome of Hordeum brevisubulatum: Genome organization, synonymous codon usage, phylogenetic relationships, and comparative structure analysis. PLoS One, 2021, 16(12), e0261196.
[http://dx.doi.org/10.1371/journal.pone.0261196] [PMID: 34898618]
[32]
Attigala, L.; Wysocki, W.P.; Duvall, M.R.; Clark, L.G. Phylogenetic estimation and morphological evolution of Arundinarieae (Bambusoideae: Poaceae) based on plastome phylogenomic analysis. Mol. Phylogenet. Evol., 2016, 101, 111-121.
[http://dx.doi.org/10.1016/j.ympev.2016.05.008] [PMID: 27164472]
[33]
Burke, S.V.; Lin, C.S.; Wysocki, W.P.; Clark, L.G.; Duvall, M.R. Phylogenomics and plastome evolution of tropical forest grasses (Leptaspis, streptochaeta: Poaceae). Front. Plant Sci., 2016, 7, 1993.
[http://dx.doi.org/10.3389/fpls.2016.01993] [PMID: 28083012]
[34]
Cotton, J.L.; Wysocki, W.P.; Clark, L.G.; Kelchner, S.A.; Pires, J.C.; Edger, P.P.; Mayfield-Jones, D.; Duvall, M.R. Resolving deep relationships of PACMAD grasses: a phylogenomic approach. BMC Plant Biol., 2015, 15(1), 178.
[http://dx.doi.org/10.1186/s12870-015-0563-9] [PMID: 26160195]
[35]
Diekmann, K.; Hodkinson, T.R.; Wolfe, K.H.; van den Bekerom, R.; Dix, P.J.; Barth, S. Complete chloroplast genome sequence of a major allogamous forage species, perennial ryegrass (Lolium perenne L.). DNA Res., 2009, 16(3), 165-176.
[http://dx.doi.org/10.1093/dnares/dsp008] [PMID: 19414502]
[36]
Sun, Y.; Shen, E.; Hu, Y.; Wu, D.; Feng, Y.; Lao, S.; Dong, C.; Du, T.; Hua, W.; Ye, C.Y.; Zhu, J.; Zhu, Q.H.; Cai, D.; Skuza, L.; Qiu, J.; Fan, L. Population genomic analysis reveals domestication of cultivated rye from weedy rye. Mol. Plant, 2022, 15(3), 552-561.
[http://dx.doi.org/10.1016/j.molp.2021.12.015] [PMID: 34971791]
[37]
Nie, Y.; Foster, C.S.P.; Zhu, T.; Yao, R.; Duchêne, D.A.; Ho, S.Y.W.; Zhong, B. Accounting for uncertainty in the evolutionary timescale of green plants through Clock-Partitioning and fossil calibration strategies. Syst. Biol., 2020, 69(1), 1-16.
[http://dx.doi.org/10.1093/sysbio/syz032] [PMID: 31058981]
[38]
Li, H.T.; Yi, T.S.; Gao, L.M.; Ma, P.F.; Zhang, T.; Yang, J.B.; Gitzendanner, M.A.; Fritsch, P.W.; Cai, J.; Luo, Y.; Wang, H. van der Bank, M.; Zhang, S.D.; Wang, Q.F.; Wang, J.; Zhang, Z.R.; Fu, C.N.; Yang, J.; Hollingsworth, P.M.; Chase, M.W.; Soltis, D.E.; Soltis, P.S.; Li, D.Z. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants, 2019, 5(5), 461-470.
[http://dx.doi.org/10.1038/s41477-019-0421-0] [PMID: 31061536]
[39]
Drouin, G.; Daoud, H.; Xia, J. Relative rates of synonymous substitutions in the mitochondrial, chloroplast and nuclear genomes of seed plants. Mol. Phylogenet. Evol., 2008, 49(3), 827-831.
[http://dx.doi.org/10.1016/j.ympev.2008.09.009] [PMID: 18838124]
[40]
Shaw, J.; Shafer, H.L.; Leonard, O.R.; Kovach, M.J.; Schorr, M.; Morris, A.B. Chloroplast DNA sequence utility for the lowest phylogenetic and phylogeographic inferences in angiosperms: The tortoise and the hare IV. Am. J. Bot., 2014, 101(11), 1987-2004.
[http://dx.doi.org/10.3732/ajb.1400398] [PMID: 25366863]
[41]
Nock, C.J.; Waters, D.L.E.; Edwards, M.A.; Bowen, S.G.; Rice, N.; Cordeiro, G.M.; Henry, R.J. Chloroplast genome sequences from total DNA for plant identification. Plant Biotechnol. J., 2011, 9(3), 328-333.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00558.x] [PMID: 20796245]
[42]
Dong, W.; Liu, J.; Yu, J.; Wang, L.; Zhou, S. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One, 2012, 7(4), e35071.
[http://dx.doi.org/10.1371/journal.pone.0035071] [PMID: 22511980]
[43]
Givnish, T.J.; Zuluaga, A.; Spalink, D.; Soto Gomez, M.; Lam, V.K.Y.; Saarela, J.M.; Sass, C.; Iles, W.J.D.; de Sousa, D.J.L.; Leebens-Mack, J.; Chris Pires, J.; Zomlefer, W.B.; Gandolfo, M.A.; Davis, J.I.; Stevenson, D.W.; dePamphilis, C.; Specht, C.D.; Graham, S.W.; Barrett, C.F.; Ané, C. Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi‐gene analyses, and a functional model for the origin of monocots. Am. J. Bot., 2018, 105(11), 1888-1910.
[http://dx.doi.org/10.1002/ajb2.1178] [PMID: 30368769]
[44]
Zhu, A.; Guo, W.; Gupta, S.; Fan, W.; Mower, J.P. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. New Phytol., 2016, 209(4), 1747-1756.
[http://dx.doi.org/10.1111/nph.13743] [PMID: 26574731]
[45]
Chen, J.H.; Chen, S.T.; He, N.Y.; Wang, Q.L.; Zhao, Y.; Gao, W.; Guo, F.Q. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nat. Plants, 2020, 6(5), 570-580.
[http://dx.doi.org/10.1038/s41477-020-0629-z] [PMID: 32313138]
[46]
Chen, P.J.; Senthilkumar, R.; Jane, W.N.; He, Y.; Tian, Z.; Yeh, K.W. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Plant Biotechnol. J., 2014, 12(4), 503-515.
[http://dx.doi.org/10.1111/pbi.12157] [PMID: 24479648]
[47]
Dufourmantel, N.; Dubald, M.; Matringe, M.; Canard, H.; Garcon, F.; Job, C.; Kay, E.; Wisniewski, J.P.; Ferullo, J.M.; Pelissier, B.; Sailland, A.; Tissot, G. Generation and characterization of soybean and marker-free tobacco plastid transformants over-expressing a bacterial 4-hydroxyphenylpyruvate dioxygenase which provides strong herbicide tolerance. Plant Biotechnol. J., 2007, 5(1), 118-133.
[http://dx.doi.org/10.1111/j.1467-7652.2006.00226.x] [PMID: 17207262]
[48]
Kumar, S.; Dhingra, A.; Daniell, H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol., 2004, 136(1), 2843-2854.
[http://dx.doi.org/10.1104/pp.104.045187] [PMID: 15347789]
[49]
Daniell, H.; Jin, S.; Zhu, X.G.; Gitzendanner, M.A.; Soltis, D.E.; Soltis, P.S. Green giant—a tiny chloroplast genome with mighty power to produce high‐value proteins: history and phylogeny. Plant Biotechnol. J., 2021, 19(3), 430-447.
[http://dx.doi.org/10.1111/pbi.13556] [PMID: 33484606]
[50]
Daniell, H.; Chan, H.; Pasoreck, E.K. Vaccination via chloroplast genetics: Affordable protein drugs for the prevention and treatment of inherited or infectious human diseases. Annu. Rev. Genet., 2016, 50(1), 595-618.
[51]
Hiratsuka, J.; Shimada, H.; Whittier, R.; Ishibashi, T.; Sakamoto, M.; Mori, M.; Kondo, C.; Honji, Y.; Sun, C.R.; Meng, B.Y.; Li, Y-Q.; Kanno, A.; Nishizawa, Y.; Hirai, A.; Shinozaki, K.; Sugiura, M. The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet., 1989, 217(2-3), 185-194.
[http://dx.doi.org/10.1007/BF02464880] [PMID: 2770692]
[52]
Gates, A.J.; Ke, Q.; Varol, O.; Barabási, A.L. Nature’s reach: narrow work has broad impact. Nature, 2019, 575(7781), 32-34.
[http://dx.doi.org/10.1038/d41586-019-03308-7] [PMID: 31695218]
[53]
Ris, H.; Plaut, W. Ultrastructure of DNA-containing areas in the chloroplast of Chlamydomonas. J. Cell Biol., 1962, 13(3), 383-391.
[http://dx.doi.org/10.1083/jcb.13.3.383] [PMID: 14492436]
[54]
Palmer, J.D. Chloroplast DNA and molecular phylogeny. BioEssays, 1985, 2(6), 263-267.
[http://dx.doi.org/10.1002/bies.950020607] [PMID: 3842602]
[55]
Bedbrook, J.R.; Bogorad, L. Endonuclease recognition sites mapped on Zea mays chloroplast DNA. Proc. Natl. Acad. Sci. USA, 1976, 73(12), 4309-4313.
[http://dx.doi.org/10.1073/pnas.73.12.4309] [PMID: 16592373]
[56]
Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K.; Ohto, C.; Torazawa, K.; Meng, B.Y.; Sugita, M.; Deno, H.; Kamogashira, T.; Yamada, K.; Kusuda, J.; Takaiwa, F.; Kato, A.; Tohdoh, N.; Shimada, H.; Sugiura, M. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J., 1986, 5(9), 2043-2049.
[http://dx.doi.org/10.1002/j.1460-2075.1986.tb04464.x] [PMID: 16453699]
[57]
Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesono, K.; Shiki, Y.; Takeuchi, M.; Chang, Z.; Aota, S.; Inokuchi, H.; Ozeki, H. Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature, 1986, 322(6079), 572-574.
[http://dx.doi.org/10.1038/322572a0]
[58]
Maier, R.M.; Neckermann, K.; Igloi, G.L.; Kössel, H. Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol., 1995, 251(5), 614-628.
[http://dx.doi.org/10.1006/jmbi.1995.0460] [PMID: 7666415]
[59]
Ogihara, Y.; Isono, K.; Kojima, T.; Endo, A.; Hanaoka, M.; Shiina, T.; Terachi, T.; Utsugi, S.; Murata, M.; Mori, N.; Takumi, S.; Ikeo, K.; Gojobori, T.; Murai, R.; Murai, K.; Matsuoka, Y.; Ohnishi, Y.; Tajiri, H.; Tsunewaki, K. Chinese spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Mol. Biol. Report., 2000, 18(3), 243-253.
[http://dx.doi.org/10.1007/BF02823995]
[60]
Calsa Júnior, T.; Carraro, D.M.; Benatti, M.R.; Barbosa, A.C.; Kitajima, J.P.; Carrer, H. Structural features and transcript-editing analysis of sugarcane (Saccharum officinarum L.) chloroplast genome. Curr. Genet., 2004, 46(6), 366-373.
[http://dx.doi.org/10.1007/s00294-004-0542-4] [PMID: 15526204]
[61]
Shahid Masood, M.; Nishikawa, T.; Fukuoka, S.; Njenga, P.K.; Tsudzuki, T.; Kadowaki, K. The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Gene, 2004, 340(1), 133-139.
[http://dx.doi.org/10.1016/j.gene.2004.06.008] [PMID: 15556301]
[62]
Diekmann, K.; Hodkinson, T.R.; Fricke, E.; Barth, S. An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection. PLoS One, 2008, 3(7), e2813.
[http://dx.doi.org/10.1371/journal.pone.0002813] [PMID: 18665252]
[63]
Bortiri, E.; Coleman-Derr, D.; Lazo, G.R.; Anderson, O.D.; Gu, Y.Q. The complete chloroplast genome sequence of Brachypodium distachyon: sequence comparison and phylogenetic analysis of eight grass plastomes. BMC Res. Notes, 2008, 1(1), 61.
[http://dx.doi.org/10.1186/1756-0500-1-61] [PMID: 18710514]
[64]
Wu, F.H.; Kan, D.P.; Lee, S.B.; Daniell, H.; Lee, Y.W.; Lin, C.C.; Lin, N.S.; Lin, C.S. Complete nucleotide sequence of Dendrocalamus latiflorus and Bambusa oldhamii chloroplast genomes. Tree Physiol., 2009, 29(6), 847-856.
[http://dx.doi.org/10.1093/treephys/tpp015] [PMID: 19324693]
[65]
Leseberg, C.H.; Duvall, M.R. The complete chloroplast genome of Coix lacryma-jobi and a comparative molecular evolutionary analysis of plastomes in cereals. J. Mol. Evol., 2009, 69(4), 311-318.
[http://dx.doi.org/10.1007/s00239-009-9275-9] [PMID: 19777151]
[66]
Morris, L.M.; Duvall, M.R. The chloroplast genome of Anomochloa marantoidea (Anomochlooideae; Poaceae) comprises a mixture of grass-like and unique features. Am. J. Bot., 2010, 97(4), 620-627.
[http://dx.doi.org/10.3732/ajb.0900226] [PMID: 21622424]
[67]
Tang, J.; Xia, H.; Cao, M.; Zhang, X.; Zeng, W.; Hu, S.; Tong, W.; Wang, J.; Wang, J.; Yu, J.; Yang, H.; Zhu, L. A comparison of rice chloroplast genomes. Plant Physiol., 2004, 135(1), 412-420.
[http://dx.doi.org/10.1104/pp.103.031245] [PMID: 15122023]
[68]
Mondal, T.K.; Rawal, H.C.; Chowrasia, S.; Varshney, D.; Panda, A.K.; Mazumdar, A.; Kaur, H.; Gaikwad, K.; Sharma, T.R.; Singh, N.K. Draft genome sequence of first monocot-halophytic species Oryza coarctata reveals stress-specific genes. Sci. Rep., 2018, 8(1), 13698.
[http://dx.doi.org/10.1038/s41598-018-31518-y] [PMID: 30209320]
[69]
Kang, S.H.; Lee, H.O.; Shin, M.J.; Kim, N.H.; Choi, B.S.; Kumar, M.; Ali, A.; Lee, S.C.; Kim, C.K. The complete chloroplast genome sequence of Coix lacryma-jobi L. (Poaceae), a cereal and medicinal crop. Mitochondrial DNA B Resour., 2018, 3(2), 980-981.
[http://dx.doi.org/10.1080/23802359.2018.1507653] [PMID: 33490553]
[70]
Feng, Q.; Song, W.C.; Zhang, Y.J.; Shi, C. The complete chloroplast genome sequence of Oryza sativa Temperate japonica. Mitochondrial DNA B Resour., 2021, 6(3), 927-928.
[http://dx.doi.org/10.1080/23802359.2021.1888331] [PMID: 33796685]
[71]
Wang, Y.B.; Liu, B.B.; Nie, Z.L.; Chen, H.F.; Chen, F.J.; Figlar, R.B.; Wen, J. Major clades and a revised classification of Magnolia and Magnoliaceae based on whole plastid genome sequences via genome skimming. J. Syst. Evol., 2020, 58(5), 673-695.
[http://dx.doi.org/10.1111/jse.12588]
[72]
Zhao, F.; Chen, Y.P.; Salmaki, Y.; Drew, B.T.; Wilson, T.C.; Scheen, A.C.; Celep, F.; Bräuchler, C.; Bendiksby, M.; Wang, Q.; Min, D.Z.; Peng, H.; Olmstead, R.G.; Li, B.; Xiang, C.L. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol., 2021, 19(1), 2.
[http://dx.doi.org/10.1186/s12915-020-00931-z] [PMID: 33419433]
[73]
Wu, Z.; Gui, S.; Quan, Z.; Pan, L.; Wang, S.; Ke, W.; Liang, D.; Ding, Y. A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots. BMC Plant Biol., 2014, 14(1), 289.
[http://dx.doi.org/10.1186/s12870-014-0289-0] [PMID: 25407166]
[74]
Eid, J.; Fehr, A.; Gray, J.; Luong, K.; Lyle, J.; Otto, G.; Peluso, P.; Rank, D.; Baybayan, P.; Bettman, B.; Bibillo, A.; Bjornson, K.; Chaudhuri, B.; Christians, F.; Cicero, R.; Clark, S.; Dalal, R.; deWinter, A.; Dixon, J.; Foquet, M.; Gaertner, A.; Hardenbol, P.; Heiner, C.; Hester, K.; Holden, D.; Kearns, G.; Kong, X.; Kuse, R.; Lacroix, Y.; Lin, S.; Lundquist, P.; Ma, C.; Marks, P.; Maxham, M.; Murphy, D.; Park, I.; Pham, T.; Phillips, M.; Roy, J.; Sebra, R.; Shen, G.; Sorenson, J.; Tomaney, A.; Travers, K.; Trulson, M.; Vieceli, J.; Wegener, J.; Wu, D.; Yang, A.; Zaccarin, D.; Zhao, P.; Zhong, F.; Korlach, J.; Turner, S. Real-time DNA sequencing from single polymerase molecules. Science, 2009, 323(5910), 133-138.
[http://dx.doi.org/10.1126/science.1162986] [PMID: 19023044]
[75]
Clarke, J.; Wu, H.C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol., 2009, 4(4), 265-270.
[http://dx.doi.org/10.1038/nnano.2009.12] [PMID: 19350039]
[76]
Drmanac, R.; Sparks, A.B.; Callow, M.J.; Halpern, A.L.; Burns, N.L.; Kermani, B.G.; Carnevali, P.; Nazarenko, I.; Nilsen, G.B.; Yeung, G.; Dahl, F.; Fernandez, A.; Staker, B.; Pant, K.P.; Baccash, J.; Borcherding, A.P.; Brownley, A.; Cedeno, R.; Chen, L.; Chernikoff, D.; Cheung, A.; Chirita, R.; Curson, B.; Ebert, J.C.; Hacker, C.R.; Hartlage, R.; Hauser, B.; Huang, S.; Jiang, Y.; Karpinchyk, V.; Koenig, M.; Kong, C.; Landers, T.; Le, C.; Liu, J.; McBride, C.E.; Morenzoni, M.; Morey, R.E.; Mutch, K.; Perazich, H.; Perry, K.; Peters, B.A.; Peterson, J.; Pethiyagoda, C.L.; Pothuraju, K.; Richter, C.; Rosenbaum, A.M.; Roy, S.; Shafto, J.; Sharanhovich, U.; Shannon, K.W.; Sheppy, C.G.; Sun, M.; Thakuria, J.V.; Tran, A.; Vu, D.; Zaranek, A.W.; Wu, X.; Drmanac, S.; Oliphant, A.R.; Banyai, W.C.; Martin, B.; Ballinger, D.G.; Church, G.M.; Reid, C.A. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 2010, 327(5961), 78-81.
[http://dx.doi.org/10.1126/science.1181498] [PMID: 19892942]
[77]
Venkatesan, B.M.; Bashir, R. Nanopore sensors for nucleic acid analysis. Nat. Nanotechnol., 2011, 6(10), 615-624.
[http://dx.doi.org/10.1038/nnano.2011.129] [PMID: 21926981]
[78]
Ferrarini, M.; Moretto, M.; Ward, J.A.; Šurbanovski, N. Stevanović V.; Giongo, L.; Viola, R.; Cavalieri, D.; Velasco, R.; Cestaro, A.; Sargent, D.J. An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genomics, 2013, 14(1), 670.
[http://dx.doi.org/10.1186/1471-2164-14-670] [PMID: 24083400]
[79]
Sandhya, S.; Srivastava, H.; Kaila, T.; Tyagi, A.; Gaikwad, K. Methods and tools for plant organelle genome sequencing, assembly, and downstream analysis. Methods Mol. Biol., 2020, 2107, 49-98.
[http://dx.doi.org/10.1007/978-1-0716-0235-5_4] [PMID: 31893443]
[80]
Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; dePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol., 2020, 21(1), 241.
[http://dx.doi.org/10.1186/s13059-020-02154-5] [PMID: 32912315]
[81]
Mckain, M. Afinit mrmckain/fast-plast: Fast-plast 1.2.6. Zenodo, 2017.
[82]
Dierckxsens, N.; Mardulyn, P.; Smits, G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res., 2017, 45(4), e18.
[PMID: 28204566]
[83]
Coissac, E.; Hollingsworth, P.M.; Lavergne, S.; Taberlet, P. From barcodes to genomes: extending the concept of DNA barcoding. Mol. Ecol., 2016, 25(7), 1423-1428.
[http://dx.doi.org/10.1111/mec.13549] [PMID: 26821259]
[84]
Ankenbrand, J.M.; Pfaff, S.; Terhoeven, N.; Qureischi, M.; Gündel, M.; L., Weiß C.; Hackl, T.;Förster, F. ChloroExtractor: Extraction and assembly of the chloroplast genome from whole genome shotgun data. J. Open Source Softw., 2018, 3(21), 464.
[http://dx.doi.org/10.21105/joss.00464]
[85]
Bakker, F.T.; Lei, D.; Yu, J.; Mohammadin, S.; Wei, Z.; Kerke, S.; Gravendeel, B.; Nieuwenhuis, M.; Staats, M.; Alquezar Planas, D.E.; Holmer, R. Herbarium genomics: Plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly pipeline. Biol. J. Linnean Soc., 2016, 117(1), 33-43.
[86]
Sancho, R.; Cantalapiedra, C.P.; López-Alvarez, D.; Gordon, S.P.; Vogel, J.P.; Catalán, P.; Contreras-Moreira, B. Comparative plastome genomics and phylogenomics of Brachypodium: flowering time signatures, introgression and recombination in recently diverged ecotypes. New Phytol., 2018, 218(4), 1631-1644.
[http://dx.doi.org/10.1111/nph.14926] [PMID: 29206296]
[87]
Wu, P.; Xu, C.; Chen, H.; Yang, J.; Zhang, X.; Zhou, S. NOVOWRAP: An automated solution for plastid genome assembly and structure standardization. Mol. Ecol. Resour., 2021, 21(6), 2177-2186.
[http://dx.doi.org/10.1111/1755-0998.13410] [PMID: 33934526]
[88]
Twyford, A.D.; Ness, R.W. Strategies for complete plastid genome sequencing. Mol. Ecol. Resour., 2017, 17(5), 858-868.
[http://dx.doi.org/10.1111/1755-0998.12626] [PMID: 27790830]
[89]
Jansen, R.K.; Raubeson, L.A.; Boore, J.L.; dePamphilis, C.W.; Chumley, T.W.; Haberle, R.C.; Wyman, S.K.; Alverson, A.J.; Peery, R.; Herman, S.J.; Fourcade, H.M.; Kuehl, J.V.; McNeal, J.R.; Leebens-Mack, J.; Cui, L. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol., 2005, 395, 348-384.
[http://dx.doi.org/10.1016/S0076-6879(05)95020-9] [PMID: 15865976]
[90]
Freudenthal, J.A.; Pfaff, S.; Terhoeven, N.; Korte, A.; Ankenbrand, M.J.; Förster, F. A systematic comparison of chloroplast genome assembly tools. Genome Biol., 2020, 21(1), 254.
[http://dx.doi.org/10.1186/s13059-020-02153-6] [PMID: 32988404]
[91]
Melsted, P.; Pritchard, J.K. Efficient counting of k-mers in DNA sequences using a bloom filter. BMC Bioinformatics, 2011, 12(1), 333.
[http://dx.doi.org/10.1186/1471-2105-12-333] [PMID: 21831268]
[92]
Smith, D.R. Mitochondrion‐to‐plastid DNA transfer: it happens. New Phytol., 2014, 202(3), 736-738.
[http://dx.doi.org/10.1111/nph.12704] [PMID: 24467712]
[93]
Iorizzo, M.; Grzebelus, D.; Senalik, D.; Szklarczyk, M.; Spooner, D.; Simon, P. Against the traffic. Mob. Genet. Elements, 2012, 2(6), 261-266.
[http://dx.doi.org/10.4161/mge.23088] [PMID: 23481035]
[94]
Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; Pyshkin, A.V.; Sirotkin, A.V.; Vyahhi, N.; Tesler, G.; Alekseyev, M.A.; Pevzner, P.A. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol., 2012, 19(5), 455-477.
[http://dx.doi.org/10.1089/cmb.2012.0021] [PMID: 22506599]
[95]
Butler, J.; MacCallum, I.; Kleber, M.; Shlyakhter, I.A.; Belmonte, M.K.; Lander, E.S.; Nusbaum, C.; Jaffe, D.B. ALLPATHS: De novo assembly of whole-genome shotgun microreads. Genome Res., 2008, 18(5), 810-820.
[http://dx.doi.org/10.1101/gr.7337908] [PMID: 18340039]
[96]
Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res., 2008, 18(5), 821-829.
[http://dx.doi.org/10.1101/gr.074492.107] [PMID: 18349386]
[97]
Soorni, A.; Haak, D.; Zaitlin, D.; Bombarely, A. Organelle_PBA, a pipeline for assembling chloroplast and mitochondrial genomes from PacBio DNA sequencing data. BMC Genomics, 2017, 18(1), 49.
[http://dx.doi.org/10.1186/s12864-016-3412-9] [PMID: 28061749]
[98]
Osuna-Mascaró, C.; Rubio de Casas, R.; Perfectti, F. Comparative assessment shows the reliability of chloroplast genome assembly using RNA-seq. Sci. Rep., 2018, 8(1), 17404.
[http://dx.doi.org/10.1038/s41598-018-35654-3] [PMID: 30479362]
[99]
Llorente, B.; Segretin, M.E.; Giannini, E.; Lobais, C.; Juárez, M.E.; Paulsen, I.T.; Blanco, N.E. Homecoming: rewinding the reductive evolution of the chloroplast genome for increasing crop yields. Nat. Commun., 2021, 12(1), 6734.
[http://dx.doi.org/10.1038/s41467-021-26975-5] [PMID: 34795241]
[100]
Gitzendanner, M.A.; Soltis, P.S.; Wong, G.K.S.; Ruhfel, B.R.; Soltis, D.E. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. Am. J. Bot., 2018, 105(3), 291-301.
[http://dx.doi.org/10.1002/ajb2.1048] [PMID: 29603143]
[101]
Tonti-Filippini, J.; Nevill, P.G.; Dixon, K.; Small, I. What can we do with 1000 plastid genomes? Plant J., 2017, 90(4), 808-818.
[http://dx.doi.org/10.1111/tpj.13491] [PMID: 28112435]
[102]
Barrett, C.F.; Baker, W.J.; Comer, J.R.; Conran, J.G.; Lahmeyer, S.C.; Leebens-Mack, J.H.; Li, J.; Lim, G.S.; Mayfield-Jones, D.R.; Perez, L.; Medina, J.; Pires, J.C.; Santos, C.Wm.; Stevenson, D.; Zomlefer, W.B.; Davis, J.I. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol., 2016, 209(2), 855-870.
[http://dx.doi.org/10.1111/nph.13617] [PMID: 26350789]
[103]
Teske, D.; Peters, A.; Möllers, A.; Fischer, M. Genomic profiling: The strengths and limitations of chloroplast Genome-Based plant variety authentication. J. Agric. Food Chem., 2020, 68(49), 14323-14333.
[http://dx.doi.org/10.1021/acs.jafc.0c03001] [PMID: 32917087]
[104]
Wicke, S.; Schneeweiss, G.M.; Depamphilis, C.W.; Mueller, K.F.; Quandt, D. The evolution of the plastid chromosome in land plants: Gene content, gene order, gene function. Plant Mol. Biol., 2011, 76(3-5SI), 273-297.
[105]
Palmer, J.D. Comparative organization of chloroplast genomes. Annu. Rev. Genet., 1985, 19(1), 325-354.
[http://dx.doi.org/10.1146/annurev.ge.19.120185.001545] [PMID: 3936406]
[106]
Kusnetsov, V.V. Chloroplasts: Structure and expression of the plastid genome. Russ. J. Plant Physiol., 2018, 65(4), 465-476.
[http://dx.doi.org/10.1134/S1021443718030044]
[107]
Burke, S.V.; Ungerer, M.C.; Duvall, M.R. Investigation of mitochondrial-derived plastome sequences in the Paspalum lineage (Panicoideae; Poaceae). BMC Plant Biol., 2018, 18(1), 152.
[http://dx.doi.org/10.1186/s12870-018-1379-1] [PMID: 30075756]
[108]
Saski, C.; Lee, S.B.; Daniell, H.; Wood, T.C.; Tomkins, J.; Kim, H.G.; Jansen, R.K. Complete chloroplast genome sequence of Gycine max and comparative analyses with other legume genomes. Plant Mol. Biol., 2005, 59(2), 309-322.
[http://dx.doi.org/10.1007/s11103-005-8882-0] [PMID: 16247559]
[109]
Nock, C.J.; Hardner, C.M.; Montenegro, J.D.; Ahmad Termizi, A.A.; Hayashi, S.; Playford, J.; Edwards, D.; Batley, J. Wild origins of macadamia domestication identified through intraspecific chloroplast genome sequencing. Front. Plant Sci., 2019, 10, 334.
[http://dx.doi.org/10.3389/fpls.2019.00334] [PMID: 30949191]
[110]
Wang, W.; Chen, S.; Zhang, X. Whole-Genome comparison reveals divergent IR borders and mutation hotspots in chloroplast genomes of herbaceous bamboos (Bambusoideae: Olyreae). Molecules, 2018, 23(7), 1537.
[http://dx.doi.org/10.3390/molecules23071537] [PMID: 29949900]
[111]
Khakhlova, O.; Bock, R. Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J., 2006, 46(1), 85-94.
[http://dx.doi.org/10.1111/j.1365-313X.2006.02673.x] [PMID: 16553897]
[112]
Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA, 1987, 84(24), 9054-9058.
[http://dx.doi.org/10.1073/pnas.84.24.9054] [PMID: 3480529]
[113]
Cheon, S.H.; Woo, M.A.; Jo, S.; Kim, Y.K.; Kim, K.J. The chloroplast phylogenomics and systematics of zoysia (Poaceae). Plants, 2021, 10(8), 1517.
[http://dx.doi.org/10.3390/plants10081517] [PMID: 34451562]
[114]
Liu, K.; Wang, R.; Guo, X.X.; Zhang, X.J.; Qu, X.J.; Fan, S.J. Comparative and phylogenetic analysis of complete chloroplast genomes in eragrostideae (Chloridoideae, poaceae). Plants, 2021, 10(1), 109.
[http://dx.doi.org/10.3390/plants10010109] [PMID: 33419221]
[115]
Ananda, G.; Norton, S.; Blomstedt, C.; Furtado, A.; Møller, B.; Gleadow, R.; Henry, R. Phylogenetic relationships in the Sorghum genus based on sequencing of the chloroplast and nuclear genes. Plant Genome, 2021, 14(3), e20123.
[http://dx.doi.org/10.1002/tpg2.20123] [PMID: 34323394]
[116]
Xu, F.; He, L.; Gao, S.; Su, Y.; Li, F.; Xu, L. Comparative analysis of two sugarcane ancestors Saccharum officinarum and S. spontaneum based on complete chloroplast genome sequences and photosynthetic ability in cold stress. Int. J. Mol. Sci., 2019, 20(15), 3828.
[http://dx.doi.org/10.3390/ijms20153828] [PMID: 31387284]
[117]
Zoschke, R.; Bock, R. Chloroplast translation: Structural and functional organization, operational control, and regulation. Plant Cell, 2018, 30(4), 745-770.
[http://dx.doi.org/10.1105/tpc.18.00016] [PMID: 29610211]
[118]
Cullis, C.A.; Vorster, B.J.; Van Der Vyver, C.; Kunert, K.J. Transfer of genetic material between the chloroplast and nucleus: how is it related to stress in plants? Ann. Bot. (Lond.), 2009, 103(4), 625-633.
[http://dx.doi.org/10.1093/aob/mcn173] [PMID: 18801916]
[119]
Eckardt, N.A. Genomic hopscotch: Gene transfer from plastid to nucleus. Plant Cell, 2006, 18(11), 2865-2867.
[http://dx.doi.org/10.1105/tpc.106.049031]
[120]
Delannoy, E.; Fujii, S.; Colas des Francs-Small, C.; Brundrett, M.; Small, I. Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol. Biol. Evol., 2011, 28(7), 2077-2086.
[http://dx.doi.org/10.1093/molbev/msr028] [PMID: 21289370]
[121]
Mohanta, T.K.; Mishra, A.K.; Khan, A.; Hashem, A.; Abd Allah, E.F.; Al-Harrasi, A. Gene loss and evolution of the plastome. Genes (Basel), 2020, 11(10), 1133.
[http://dx.doi.org/10.3390/genes11101133] [PMID: 32992972]
[122]
Chen, N.; Sha, L.N.; Wang, Y.L.; Yin, L.J.; Zhang, Y.; Wang, Y.; Wu, D.D.; Kang, H.Y.; Zhang, H.Q.; Zhou, Y.H.; Sun, G.L.; Fan, X. Variation in plastome sizes accompanied by evolutionary history in monogenomic triticeae (Poaceae: Triticeae). Front. Plant Sci., 2021, 12, 741063.
[http://dx.doi.org/10.3389/fpls.2021.741063] [PMID: 34966398]
[123]
Chen, N.; Sha, L.N.; Dong, Z.Z.; Tang, C.; Wang, Y.; Kang, H.Y.; Zhang, H.Q.; Yan, X.B.; Zhou, Y.H.; Fan, X. Complete structure and variation of the chloroplast genome of Agropyron cristatum (L.). Gaertn. Gene, 2018, 640, 86-96.
[http://dx.doi.org/10.1016/j.gene.2017.10.009] [PMID: 29030254]
[124]
Wu, M.; Lan, S.; Cai, B.; Chen, S.; Chen, H.; Zhou, S. The complete chloroplast genome of guadua angustifolia and comparative analyses of Neotropical-Paleotropical bamboos. PLoS One, 2015, 10(12), e0143792.
[http://dx.doi.org/10.1371/journal.pone.0143792] [PMID: 26630488]
[125]
Lee, H.L.; Jansen, R.K.; Chumley, T.W.; Kim, K.J. Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol. Biol. Evol., 2007, 24(5), 1161-1180.
[http://dx.doi.org/10.1093/molbev/msm036] [PMID: 17329229]
[126]
Huang, Y.Y.; Cho, S.T.; Haryono, M.; Kuo, C.H. Complete chloroplast genome sequence of common bermudagrass (Cynodon dactylon (L.) Pers.) and comparative analysis within the family Poaceae. PLoS One, 2017, 12(6), e0179055.
[http://dx.doi.org/10.1371/journal.pone.0179055] [PMID: 28617867]
[127]
Nan, N.; Wang, J.; Shi, Y.; Qian, Y.; Jiang, L.; Huang, S.; Liu, Y.; Wu, Y.; Liu, B.; Xu, Z.Y. Rice plastidial NAD ‐dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content. Plant Biotechnol. J., 2020, 18(1), 172-184.
[http://dx.doi.org/10.1111/pbi.13184] [PMID: 31161713]
[128]
Li, Y.; Zhou, J.; Chen, X.; Cui, Y.; Xu, Z.; Li, Y.; Song, J.; Duan, B.; Yao, H. Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic Taxillus species. Sci. Rep., 2017, 7(1), 12834.
[http://dx.doi.org/10.1038/s41598-017-13401-4] [PMID: 29026168]
[129]
Mukhopadhyay, J.; Hausner, G. Organellar introns in fungi, algae, and plants. Cells, 2021, 10(8), 2001.
[http://dx.doi.org/10.3390/cells10082001] [PMID: 34440770]
[130]
Strand, D.D.; D’Andrea, L.; Bock, R. The plastid NAD(P)H dehydrogenase-like complex: structure, function and evolutionary dynamics. Biochem. J., 2019, 476(19), 2743-2756.
[http://dx.doi.org/10.1042/BCJ20190365] [PMID: 31654059]
[131]
Filip, E.; Skuza, L. Horizontal gene transfer involving chloroplasts. Int. J. Mol. Sci., 2021, 22(9), 4484.
[http://dx.doi.org/10.3390/ijms22094484] [PMID: 33923118]
[132]
Yuan, Q.; Hill, J.; Hsiao, J.; Moffat, K.; Ouyang, S.; Cheng, Z.; Jiang, J.; Buell, C. Genome sequencing of a 239-kb region of rice chromosome 10L reveals a high frequency of gene duplication and a large chloroplast DNA insertion. Mol. Genet. Genomics, 2002, 267(6), 713-720.
[http://dx.doi.org/10.1007/s00438-002-0706-1] [PMID: 12207219]
[133]
Guo, X.; Ruan, S.; Hu, W.; Cai, D.; Fan, L. Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct. Integr. Genomics, 2008, 8(2), 101-108.
[http://dx.doi.org/10.1007/s10142-007-0067-2] [PMID: 17994302]
[134]
Ma, X.; Fan, J.; Wu, Y.; Zhao, S.; Zheng, X.; Sun, C.; Tan, L. Whole‐genome de novo assemblies reveal extensive structural variations and dynamic organelle‐to‐nucleus DNA transfers in African and Asian rice. Plant J., 2020, 104(3), 596-612.
[http://dx.doi.org/10.1111/tpj.14946] [PMID: 32748498]
[135]
Wang, D.; Wu, Y.W.; Shih, A.C.C.; Wu, C.S.; Wang, Y.N.; Chaw, S.M. Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol. Biol. Evol., 2007, 24(9), 2040-2048.
[http://dx.doi.org/10.1093/molbev/msm133] [PMID: 17609537]
[136]
Stern, D.B.; Lonsdale, D.M. Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature, 1982, 299(5885), 698-702.
[http://dx.doi.org/10.1038/299698a0] [PMID: 6889685]
[137]
Tsunewaki, K. Interorganellar DNA transfer in wheat: dynamics and phylogenetic origin. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2011, 87(8), 529-549.
[http://dx.doi.org/10.2183/pjab.87.529] [PMID: 21986316]
[138]
Wang, D.; Rousseau-Gueutin, M.; Timmis, J.N. Plastid sequences contribute to some plant mitochondrial genes. Mol. Biol. Evol., 2012, 29(7), 1707-1711.
[http://dx.doi.org/10.1093/molbev/mss016] [PMID: 22319165]
[139]
Wang, X.C.; Chen, H.; Yang, D.; Liu, C. Diversity of mitochondrial plastid DNAs (MTPTs) in seed plants. Mitochondrial DNA A. DNA Mapp. Seq. Anal., 2018, 29(4), 635-642.
[http://dx.doi.org/10.1080/24701394.2017.1334772] [PMID: 28573928]
[140]
Martin, W.; Stoebe, B.; Goremykin, V.; Hansmann, S.; Hasegawa, M.; Kowallik, K.V. Gene transfer to the nucleus and the evolution of chloroplasts. Nature, 1998, 393(6681), 162-165.
[http://dx.doi.org/10.1038/30234] [PMID: 11560168]
[141]
Kanno, A.; Nakazono, M.; Hirai, A.; Kameya, T. Maintenance of chloroplast-derived sequences in the mitochondrial DNA of Gramineae. Curr. Genet., 1997, 32(6), 413-419.
[http://dx.doi.org/10.1007/s002940050296] [PMID: 9388297]
[142]
Nakazono, M.; Hirai, A. Identification of the entire set of transferred chloroplast DNA sequences in the mitochondrial genome of rice. Mol. Gen. Genet., 1993, 236(2-3), 341-346.
[http://dx.doi.org/10.1007/BF00277131]
[143]
Joyce, P.B.M.; Gray, M.W. Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res., 1989, 17(14), 5461-5476.
[http://dx.doi.org/10.1093/nar/17.14.5461] [PMID: 2762145]
[144]
Wysocki, W.P.; Clark, L.G.; Attigala, L.; Ruiz-Sanchez, E.; Duvall, M.R. Evolution of the bamboos (Bambusoideae; Poaceae): a full plastome phylogenomic analysis. BMC Evol. Biol., 2015, 15(1), 50.
[http://dx.doi.org/10.1186/s12862-015-0321-5] [PMID: 25887467]
[145]
Ma, P.F.; Zhang, Y.X.; Guo, Z.H.; Li, D.Z. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus. Sci. Rep., 2015, 5(1), 11608.
[http://dx.doi.org/10.1038/srep11608] [PMID: 26100509]
[146]
Hanson, M.R.; Sutton, C.; Luis, B. Plant organelle gene expression: Altered by RNA editing. Trends Plant Sci., 1996, 1(2), 57-64.
[http://dx.doi.org/10.1016/S1360-1385(96)80030-6]
[147]
Stern, D.B.; Goldschmidt-Clermont, M.; Hanson, M.R. Chloroplast RNA Metabolism. Annu. Rev. Plant Biol., 2010, 61(1), 125-155.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112242] [PMID: 20192740]
[148]
Sun, T.; Bentolila, S.; Hanson, M.R. The unexpected diversity of plant organelle RNA editosomes. Trends Plant Sci., 2016, 21(11), 962-973.
[http://dx.doi.org/10.1016/j.tplants.2016.07.005] [PMID: 27491516]
[149]
Hoch, B.; Maier, R.M.; Appel, K.; Igloi, G.L.; Kössel, H. Editing of a chloroplast mRNA by creation of an initiation codon. Nature, 1991, 353(6340), 178-180.
[http://dx.doi.org/10.1038/353178a0] [PMID: 1653905]
[150]
Wang, M.; Liu, H.; Ge, L.; Xing, G.; Wang, M.; Weining, S.; Nie, X. Identification and analysis of RNA editing sites in the chloroplast transcripts of Aegilops tauschii l. Genes (Basel), 2016, 8(1), 13.
[http://dx.doi.org/10.3390/genes8010013] [PMID: 28042823]
[151]
Kumbhar, F.; Nie, X.; Xing, G.; Zhao, X.; Lin, Y.; Wang, S.; Weining, S. Identification and characterisation of RNA editing sites in chloroplast transcripts of einkorn wheat (Triticum monococcum). Ann. Appl. Biol., 2018, 172(2), 197-207.
[http://dx.doi.org/10.1111/aab.12412]
[152]
Corneille, S.; Lutz, K.; Maliga, P. Conservation of RNA editing between rice and maize plastids: are most editing events dispensable? Mol. Genet. Genomics, 2000, 264(4), 419-424.
[http://dx.doi.org/10.1007/s004380000295] [PMID: 11129045]
[153]
Liu, R.; Li, W.; Lu, D.; Li, J.; Qu, Y.; Jin, W.; Dong, X. Variation in RNA‐editing sites of chloroplast protein‐coding genes in early‐maturity mutant induced by carbon‐ion beam in Sweet Sorghum. Plant Breed., 2020, 139(4), 762-778.
[http://dx.doi.org/10.1111/pbr.12823]
[154]
Ichinose, M.; Sugita, M. RNA editing and its molecular mechanism in plant organelles. Genes (Basel), 2016, 8(1), 5.
[http://dx.doi.org/10.3390/genes8010005] [PMID: 28025543]
[155]
Hao, W.; Liu, G.; Wang, W.; Shen, W.; Zhao, Y.; Sun, J.; Yang, Q.; Zhang, Y.; Fan, W.; Pei, S.; Chen, Z.; Xu, D.; Qin, T. RNA editing and its roles in plant organelles. Front. Genet., 2021, 12, 757109.
[http://dx.doi.org/10.3389/fgene.2021.757109] [PMID: 34659369]
[156]
Small, I.D.; Schallenberg-Rüdinger, M.; Takenaka, M.; Mireau, H.; Ostersetzer-Biran, O. Plant organellar RNA editing: what 30 years of research has revealed. Plant J., 2020, 101(5), 1040-1056.
[http://dx.doi.org/10.1111/tpj.14578] [PMID: 31630458]
[157]
Hein, A.; Knoop, V. Expected and unexpected evolution of plant RNA editing factors CLB19, CRR28 and RARE1: retention of CLB19 despite a phylogenetically deep loss of its two known editing targets in Poaceae. BMC Evol. Biol., 2018, 18(1), 85.
[http://dx.doi.org/10.1186/s12862-018-1203-4] [PMID: 29879897]
[158]
Shikanai, T. RNA editing in plant organelles: machinery, physiological function and evolution. Cell. Mol. Life Sci., 2006, 63(6), 698-708.
[http://dx.doi.org/10.1007/s00018-005-5449-9] [PMID: 16465445]
[159]
Rascón-Cruz, Q.; González-Barriga, C.D.; Iglesias-Figueroa, B.F.; Trejo-Muñoz, J.C.; Siqueiros-Cendón, T.; Sinagawa-García, S.R.; Arévalo-Gallegos, S.; Espinoza-Sánchez, E.A. Plastid transformation: Advances and challenges for its implementation in agricultural crops. Electron. J. Biotechnol., 2021, 51, 95-109.
[http://dx.doi.org/10.1016/j.ejbt.2021.03.005]
[160]
Kumar, A.U.; Ling, A.P.K. Gene introduction approaches in chloroplast transformation and its applications. J. Genet. Eng. Biotechnol., 2021, 19(1), 148.
[http://dx.doi.org/10.1186/s43141-021-00255-7] [PMID: 34613540]
[161]
Yu, Y.; Yu, P.C.; Chang, W.J.; Yu, K.; Lin, C.S. Plastid transformation: How does it work? Can it be applied to crops? What can it offer? Int. J. Mol. Sci., 2020, 21(14), 4854.
[http://dx.doi.org/10.3390/ijms21144854] [PMID: 32659946]
[162]
Adem, M.; Beyene, D.; Feyissa, T. Recent achievements obtained by chloroplast transformation. Plant Methods, 2017, 13(1), 30.
[http://dx.doi.org/10.1186/s13007-017-0179-1] [PMID: 28428810]
[163]
Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annu. Rev. Plant Biol., 2015, 66(1), 211-241.
[http://dx.doi.org/10.1146/annurev-arplant-050213-040212] [PMID: 25494465]
[164]
Svab, Z.; Hajdukiewicz, P.; Maliga, P. Stable transformation of plastids in higher plants. Proc. Natl. Acad. Sci. USA, 1990, 87(21), 8526-8530.
[http://dx.doi.org/10.1073/pnas.87.21.8526] [PMID: 11607112]
[165]
Kim, E.H.; Suh, S.C.; Park, B.S.; Shin, K.S.; Kweon, S.J.; Han, E.J.; Park, S.H.; Kim, Y.S.; Kim, J.K. Chloroplast-targeted expression of synthetic cry1Ac in transgenic rice as an alternative strategy for increased pest protection. Planta, 2009, 230(2), 397-405.
[http://dx.doi.org/10.1007/s00425-009-0955-x] [PMID: 19484258]
[166]
Shen, B.R.; Wang, L.M.; Lin, X.L.; Yao, Z.; Xu, H.W.; Zhu, C.H.; Teng, H.Y.; Cui, L.L.; Liu, E.E.; Zhang, J.J.; He, Z.H.; Peng, X.X. Engineering a new chloroplastic photorespiratory bypass to increase photosynthetic efficiency and productivity in rice. Mol. Plant, 2019, 12(2), 199-214.
[http://dx.doi.org/10.1016/j.molp.2018.11.013] [PMID: 30639120]
[167]
Wang, Y.; Wei, Z.; Xing, S. Stable plastid transformation of rice, a monocot cereal crop. Biochem. Biophys. Res. Commun., 2018, 503(4), 2376-2379.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.164] [PMID: 29966651]
[168]
Lee, S.M.; Kang, K.; Chung, H.; Yoo, S.H.; Xu, X.M.; Lee, S.B.; Cheong, J.J.; Daniell, H.; Kim, M. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol. Cells, 2006, 21(3), 401-410.
[PMID: 16819304]
[169]
Small, R.L.; Cronn, R.C.; Wendel, J.F. Use of nuclear genes for phylogeny reconstruction in plants. Aust. Syst. Bot., 2004, 17(2), 145.
[http://dx.doi.org/10.1071/SB03015]
[170]
Aoki, D.; Yamaguchi, H. Genetic relationship between Echinochloa crus-galli and Echinochloa oryzicola accessions inferred from internal transcribed spacer and chloroplast DNA sequences. Weed Biol. Manage., 2008, 8(4), 233-242.
[http://dx.doi.org/10.1111/j.1445-6664.2008.00303.x]
[171]
Bernhardt, N.; Brassac, J.; Kilian, B.; Blattner, F.R. Dated tribe-wide whole chloroplast genome phylogeny indicates recurrent hybridizations within Triticeae. BMC Evol. Biol., 2017, 17(1), 141.
[http://dx.doi.org/10.1186/s12862-017-0989-9] [PMID: 28622761]
[172]
Barchi, L.; Rabanus-Wallace, M.T.; Prohens, J.; Toppino, L.; Padmarasu, S.; Portis, E.; Rotino, G.L.; Stein, N.; Lanteri, S.; Giuliano, G. Improved genome assembly and pan‐genome provide key insights into eggplant domestication and breeding. Plant J., 2021, 107(2), 579-596.
[http://dx.doi.org/10.1111/tpj.15313] [PMID: 33964091]
[173]
Magdy, M.; Ou, L.; Yu, H.; Chen, R.; Zhou, Y.; Hassan, H.; Feng, B.; Taitano, N.; van der Knaap, E.; Zou, X.; Li, F.; Ouyang, B. Pan-plastome approach empowers the assessment of genetic variation in cultivated Capsicum species. Hortic. Res., 2019, 6(1), 108.
[http://dx.doi.org/10.1038/s41438-019-0191-x] [PMID: 31645963]
[174]
Sielemann, K.; Pucker, B.; Schmidt, N.; Viehöver, P.; Weisshaar, B.; Heitkam, T.; Holtgräwe, D. Complete pan-plastome sequences enable high resolution phylogenetic classification of sugar beet and closely related crop wild relatives. BMC Genomics, 2022, 23(1), 113.
[http://dx.doi.org/10.1186/s12864-022-08336-8] [PMID: 35139817]
[175]
Wang, J.; Liao, X.; Gu, C.; Xiang, K.; Wang, J.; Li, S.; Tembrock, L.R.; Wu, Z.; He, A.W. The Asian lotus (Nelumbo nucifera) pan-plastome: Diversity and divergence in a living fossil grown for seed, rhizome, and aesthetics. Ornament. Plant Res., 2022, 2(1), 1-10.
[http://dx.doi.org/10.48130/OPR-2022-0010]
[176]
Cui, L.; Veeraraghavan, N.; Richter, A.; Wall, K.; Jansen, R.K.; Leebens-Mack, J.; Makalowska, I.; dePamphilis, C.W.; Chloroplast, D.B. The chloroplast genome database. Nucleic Acids Res., 2006, 34(90001), D692-D696.
[http://dx.doi.org/10.1093/nar/gkj055] [PMID: 16381961]
[177]
Nevill, P.G.; Zhong, X.; Tonti-Filippini, J.; Byrne, M.; Hislop, M.; Thiele, K.; van Leeuwen, S.; Boykin, L.M.; Small, I. Large scale genome skimming from herbarium material for accurate plant identification and phylogenomics. Plant Methods, 2020, 16(1), 1.
[http://dx.doi.org/10.1186/s13007-019-0534-5] [PMID: 31911810]
[178]
Wang, D.; Yu, J. Plastid-LCGbase: a collection of evolutionarily conserved plastid-associated gene pairs. Nucleic Acids Res., 2015, 43(D1), D990-D995.
[http://dx.doi.org/10.1093/nar/gku1070] [PMID: 25378306]
[179]
Li, X.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.; Chen, S. Plant DNA barcoding: from gene to genome. Biol. Rev. Camb. Philos. Soc., 2015, 90(1), 157-166.
[http://dx.doi.org/10.1111/brv.12104] [PMID: 24666563]
[180]
Li, S.; Chang, L.; Zhang, J. Advancing organelle genome transformation and editing for crop improvement. Plant Commun., 2021, 2(2), 100141.
[http://dx.doi.org/10.1016/j.xplc.2021.100141] [PMID: 33898977]
[181]
Bharadwaj, R.K.B.; Kumar, S.R.; Sathishkumar, R. Springer Singapore; Singapore, 2019, pp. 79-100.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy