Skip to main content
Log in

Nonlinear Model of Shear Flow of Thixotropic Viscoelastoplastic Continua Taking into Account the Evolution of the Structure and Its Analysis

  • Published:
Moscow University Mechanics Bulletin Aims and scope

Abstract

We formulate a nonlinear Maxwell-type constitutive equation for shear deformation of polymers in flow state or polymer viscoelastic melts and solutions which takes into account interaction of deformation process and structure evolution, namely, influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. The constitutive equation is governed by an increasing material function and six positive parameters. We reduce it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, stress and relative cross-links density) and prove existence and uniqueness of its equilibrium point and that its coordinates depend monotonically on every material parameter and on shear rate. We derive general equations for model flow curve and viscosity curve and prove that the first one increases and the second one decreases while the shear rate grows. Thus, the model describes basic phenomena observed for simple shear flow of shear thinning fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. C. Bingham, Fluidity and Plasticity (McGraw-Hill, New York, 1922).

    Google Scholar 

  2. M. Reiner, ‘‘Rheology,’’ Encyclopedia of Physics, (Springer, Berlin, 1958), Vol. 6, pp. 434–550.

    Google Scholar 

  3. P. A. Rehbinder, Surface Phenomena in Disperse Systems. Colloid Chemistry. Selected Works (Nauka, Moscow, 1978).

    Google Scholar 

  4. B. D. Coleman, A. Makrovitz, and W. Noll, Viscometric Flows of Non-Newtonian Fluids: Theory and Experiment (Springer, Berlin, 1966).

    Book  Google Scholar 

  5. Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Leningrad, 1975).

    MATH  Google Scholar 

  6. G. V. Vinogradov and A. Ya. Malkin, Rheology of Polymers (Khimiya, Moscow, 1977).

    Google Scholar 

  7. E. E. Bibik, Rheology of Disperse Systems (Izd-vo Leningrad. Univ., Leningrad, 1981).

    Google Scholar 

  8. G. M. Bartenev and Yu. V. Zelenev, Physics and Mechanics of Polymers (Vysshaya Shkola, Moscow, 1983).

    Google Scholar 

  9. R. G. Larson, Constitutive Equations for Polymer Melts and Solutions (Butterworth, Boston, 1988).

    Google Scholar 

  10. N. B. Ur’ev, Physicochemical Foundations of the Technology of Disperse Systems and Materials (Khimiya, Moscow, 1988).

    Google Scholar 

  11. A. I. Leonov and A. N. Prokunin, Non-Linear Phenomena in Flows of Viscoelastic Polymer Fluids (Chapman and Hall, London, 1994).

    Book  Google Scholar 

  12. C. Macosko, Rheology: Principles, Measurements and Applications (VCH, New York, 1994).

    Google Scholar 

  13. G. Schramm, A Practical Approach to Rheology and Rheometry (Gebrueder Haake, Karlsruhe, 1994).

    Google Scholar 

  14. C. L. Rohn, Analytical Polymer Rheology (Hanser Publishers, Munich, 1995).

    Google Scholar 

  15. R. G. Larson, Structure and Rheology of Complex Fluids (Oxford Press, New York, 1999).

    Google Scholar 

  16. R. K. Gupta, Polymer and Composite Rheology (Marcel Dekker, New York, 2000).

    Book  Google Scholar 

  17. R. I. Tanner, Engineering Rheology (Oxford Univ. Press, Oxford, 2000).

    MATH  Google Scholar 

  18. A. Y. Malkin and A. I. Isayev, Rheology: Conceptions, Methods, Applications, 2nd ed. (ChemTec Publishing, Toronto, 2012).

    Google Scholar 

  19. E. A. Kirsanov and V. N. Matveenko, Non-Newtonian Behavior of Structured Systems (Tekhnosfera, Moscow, 2016).

    Google Scholar 

  20. A. M. Stolin, A. Ya. Malkin, and A. G. Merzhanov, ‘‘Non-isothermal processes and methods of investigation in the chemistry and mechanics of polymers,’’ Russ. Chem. Rev. 48, 798–811 (1979). https://doi.org/10.1070/RC1979v048n08ABEH002412

    Article  ADS  Google Scholar 

  21. A. N. Prokunin, ‘‘On the non-linear Maxwell-type defining equations for describing the motions of polymer liquids,’’ J. Appl. Math. Mech. 48, 699–706 (1984). https://doi.org/10.1016/0021-8928(84)90037-6

    Article  MathSciNet  MATH  Google Scholar 

  22. A. I. Leonov, ‘‘Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data,’’ Rheol. Ser. 8, 519–575 (1999). https://doi.org/10.1016/S0169-3107(99)80040-9

    Article  Google Scholar 

  23. J. J. Stickel and R. L. Powell, ‘‘Fluid mechanics and rheology of dense suspensions,’’ Annu. Rev. Fluid Mech. 37, 129–149 (2005). https://doi.org/10.1146/annurev.fluid.36.050802.122132

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. S. Mueller, E. W. Llewellin, and H. M. Mader, ‘‘The rheology of suspensions of solid particles,’’ Proc. Roy. Soc. A. 466, 1201–1228 (2010). https://doi.org/10.1098/rspa.2009.0445

    Article  ADS  Google Scholar 

  25. A. Ya. Malkin and S. A. Patlazhan, ‘‘Wall slip for complex liquids—Phenomenon and its causes,’’ Adv. Colloid Interface Sci. 257, 42–57 (2018). https://doi.org/10.1016/j.cis.2018.05.008

    Article  Google Scholar 

  26. A. M. Stolin, S. I. Khudyaev, and L. M. Buchatskii, ‘‘Theory of viscosity superanomaly of structured systems,’’ Dokl. Akad. Nauk SSSR 243, 430–433 (1978).

    Google Scholar 

  27. A. M. Stolin and V. I. Irzhak, ‘‘Structurally nonuniform flow regimes in the process of polymer fiber formation,’’ Polym. Sci. 35, 990–992 (1993).

    Google Scholar 

  28. N. A. Belyaeva, A. M. Stolin, and L. S. Stelman, ‘‘Modes of firmly-phase extrusion of viscoelastic structured systems,’’ Inzh. Fiz., No. 1, 10–16 (2009).

  29. J. F. Brady and J. F. Morris, ‘‘Microstructure of strongly sheared suspensions and its impact on rheology and diffusion,’’ J. Fluid Mech. 348, 103–139 (1997). https://doi.org/10.1017/S0022112097006320

    Article  ADS  MATH  Google Scholar 

  30. C. L. Tucker, III and P. Moldenaers, ‘‘Microstructural evolution in polymer blends,’’ Annu. Rev. Fluid Mech. 34, 177–210 (2002). https://doi.org/10.1146/annurev.fluid.34.082301.144051

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. A. Ya. Malkin and V. G. Kulichikhin, ‘‘Structure and rheology of highly concentrated emulsions: A modern look,’’ Russ. Chem. Rev. 84, 803–825 (2015). https://doi.org/10.1070/RCR4499

    Article  ADS  Google Scholar 

  32. K. A. Padmanabhan, R. A. Vasin, and F. U. Enikeev, Superplastic Flow: Phenomenology and Mechanics, Engineering Materials (Springer, Berlin, 2001). https://doi.org/10.1007/978-3-662-04367-7

  33. M. E. Eglit, A. E. Yakubenko, and J. S. Zayko, ‘‘Mathematical modeling of slope flows of non-Newtonian media,’’ Proc. Steklov Inst. Math. 300, 219–229 (2018). https://doi.org/10.1134/S0081543818010194

    Article  MATH  Google Scholar 

  34. A. V. Khokhlov, ‘‘Properties of a nonlinear viscoelastoplastic model of Maxwell type with two material functions,’’ Moscow Univ. Mech. Bull. 71, 132–136 (2016). https://doi.org/10.3103/S0027133016060029.

    Article  MATH  Google Scholar 

  35. A. V. Khokhlov, ‘‘The nonlinear Maxwell-type model for viscoelastoplastic materials: Simulation of temperature influence on creep, relaxation and strain-stress curves,’’ Vestn. Samar. Gos. Tekh. Univ. Ser. Fiz.-Mat. Nauki 21 (1), 160–179 (2017). https://doi.org/10.14498/vsgtu1524

    Article  Google Scholar 

  36. A. V. Khokhlov, ‘‘A nonlinear Maxwell-type model for rheonomic materials: stability under symmetric cyclic loadings,’’ Moscow Univ. Mech. Bull. 73, 39–42 (2018). https://doi.org/10.3103/S0027133018020036

    Article  MATH  Google Scholar 

  37. A. V. Khokhlov, ‘‘Applicability indicators and identification techniques for a nonlinear Maxwell-type elasto-viscoplastic model using multi-step creep curves,’’ Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana. Ser. Estestv. Nauki, No. 6, 92–112 (2018). https://doi.org/10.18698/1812-3368-2018-6-92-112

    Article  Google Scholar 

  38. A. V. Khokhlov, ‘‘Applicability indicators and identification techniques for a nonlinear Maxwell-type elastoviscoplastic model using loading–unloading curves,’’ Mech. Compos. Mater. 55, 195–210 (2019). https://doi.org/10.1007/s11029-019-09809-w

    Article  ADS  Google Scholar 

  39. A. V. Khokhlov, ‘‘Possibility to describe the alternating and non-monotonic time dependence of Poisson’s ratio during creep using a nonlinear Maxwell-type viscoelastoplasticity model,’’ Russ. Metall. (Met.) 2019, 956–963 (2019). https://doi.org/10.1134/S0036029519100136

    Article  ADS  Google Scholar 

  40. A. V. Khokhlov, ‘‘Two-sided estimates for the relaxation function of the linear theory of heredity via the relaxation curves during the ramp-deformation and the methodology of identification,’’ Mech. Solids 53, 307–328 (2018). https://doi.org/10.3103/S0025654418070105

    Article  ADS  Google Scholar 

  41. A. V. Khokhlov, ‘‘Properties of the set of strain diagrams produced by Rabotnov nonlinear equation for rheonomous materials,’’ Mech. Solids 54, 384–399 (2019). https://doi.org/10.3103/S002565441902002X

    Article  ADS  Google Scholar 

Download references

Funding

The study is supported by the Russian Science Foundation, project no. 22-13-20056.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Stolin or A. V. Khokhlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Oborin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stolin, A.M., Khokhlov, A.V. Nonlinear Model of Shear Flow of Thixotropic Viscoelastoplastic Continua Taking into Account the Evolution of the Structure and Its Analysis. Moscow Univ. Mech. Bull. 77, 127–135 (2022). https://doi.org/10.3103/S0027133022050065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027133022050065

Keywords:

Navigation