skip to main content
research-article

Distributed ℋ2-Matrices for Boundary Element Methods

Published:15 June 2023Publication History
Skip Abstract Section

Abstract

Standard discretization techniques for boundary integral equations, e.g., the Galerkin boundary element method, lead to large densely populated matrices that require fast and efficient compression techniques like the fast multipole method or hierarchical matrices. If the underlying mesh is very large, running the corresponding algorithms on a distributed computer is attractive, e.g., since distributed computers frequently are cost-effective and offer a high accumulated memory bandwidth.

Compared to the closely related particle methods, for which distributed algorithms are well-established, the Galerkin discretization poses a challenge, since the supports of the basis functions influence the block structure of the matrix and therefore the flow of data in the corresponding algorithms. This article introduces distributed ℋ2-matrices, a class of hierarchical matrices that is closely related to fast multipole methods and particularly well-suited for distributed computing. While earlier efforts required the global tree structure of the ℋ2-matrix to be stored in every node of the distributed system, the new approach needs only local multilevel information that can be obtained via a simple distributed algorithm, allowing us to scale to significantly larger systems. Experiments show that this approach can handle very large meshes with more than 130 million triangles efficiently.

REFERENCES

  1. [1] Anderson C. R.. 1992. An implementation of the fast multipole method without multipoles. SIAM Journal on Scientific and Statistical Computing 13 (1992), 923947.Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. [2] Bebendorf M.. 2000. Approximation of boundary element matrices. Numerische Mathematik 86, 4 (2000), 565589.Google ScholarGoogle ScholarCross RefCross Ref
  3. [3] Bebendorf M.. 2008. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems. Springer.Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. [4] Bebendorf M. and Kriemann R.. 2005. Fast parallel solution of boundary integral equations and related problems. Computing and Visualization in Science 8 (2005), 121135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. [5] Bebendorf M. and Rjasanow S.. 2003. Adaptive low-rank approximation of collocation matrices. Computing 70, 1 (2003), 124.Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. [6] Bendoraityte J. and Börm S.. 2008. Distributed \({\mathcal {H}}^2\)-matrices for non-local operators. Computing and Visualization in Science 11 (2008), 237249.Google ScholarGoogle ScholarCross RefCross Ref
  7. [7] Börm S.. 2010. Efficient Numerical Methods for Non-local Operators: \({\mathcal {H}}^2\)-Matrix Compression, Algorithms, and Analysis. EMS Tracts in MathematicsGoogle ScholarGoogle ScholarCross RefCross Ref
  8. [8] Börm S. and Christophersen S.. 2016. Approximation of integral operators by Green quadrature and nested cross approximation. Numerische Mathematik 133, 3 (2016), 409442.Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. [9] Börm S. and Gördes J.. 2013. Low-rank approximation of integral operators by using the Green formula and quadrature. Numerical Algorithms 64, 3 (2013), 567592. Retrieved from Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. [10] Börm S. and Grasedyck L.. 2004. Low-rank approximation of integral operators by interpolation. Computing 72 (2004), 325332.Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. [11] Börm S. and Hackbusch W.. 2002. Data-sparse approximation by adaptive \({\mathcal {H}}^2\)-matrices. Computing 69 (2002), 135.Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. [12] Börm S. and Hackbusch W.. 2002. \({\mathcal {H}}^2\)-matrix approximation of integral operators by interpolation. Applied Numerical Mathematics 43 (2002), 129143.Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. [13] Börm S. and Hackbusch W.. 2005. Hierarchical quadrature of singular integrals. Computing 74 (2005), 75100.Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. [14] Börm S., Löhndorf M., and Melenk J. M.. 2005. Approximation of integral operators by variable-order interpolation. Numerische Mathematik 99, 4 (2005), 605643.Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. [15] Börm S. and Sauter S. A.. 2005. BEM with linear complexity for the classical boundary integral operators. Mathematics of Computation 74 (2005), 11391177.Google ScholarGoogle ScholarCross RefCross Ref
  16. [16] Dahmen W., Harbrecht H., and Schneider R.. 2006. Compression techniques for boundary integral equations — Asymptotically optimal complexity estimates. SIAM Journal on Numerical Analysis 43, 6 (2006), 22512271.Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. [17] Dahmen W., Prössdorf S., and Schneider R.. 1994. Wavelet approximation methods for pseudodifferential equations I: Stability and convergence. Mathematische Zeitschrift 215 (1994), 583620.Google ScholarGoogle ScholarCross RefCross Ref
  18. [18] Dahmen W. and Schneider R.. 1999. Wavelets on manifolds I: Construction and domain decomposition. SIAM Journal on Mathematical Analysis 31 (1999), 184230.Google ScholarGoogle ScholarCross RefCross Ref
  19. [19] Erichsen S. and Sauter S. A.. 1998. Efficient automatic quadrature in 3-d Galerkin BEM. Computer Methods in Applied Mechanics and Engineering 157 (1998), 215224.Google ScholarGoogle ScholarCross RefCross Ref
  20. [20] Faustmann M., Melenk J. M., and Praetorius D.. 2016. Existence of \({\mathcal {H}}\)-matrix approximants to the inverses of BEM matrices: The simple-layer operator. Mathematics of Computation 85 (2016), 119152.Google ScholarGoogle ScholarCross RefCross Ref
  21. [21] Fischer Bernd. 1996. Polynomial-based Iteration Methods for Symmetric Linear Systems. Vieweg+Teubner.Google ScholarGoogle ScholarCross RefCross Ref
  22. [22] Giebermann K.. 2001. Multilevel approximation of boundary integral operators. Computing 67 (2001), 183207.Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. [23] Gimbutas Z. and Rokhlin V.. 2002. A generalized fast multipole method for nonoscillatory kernels. SIAM Journal on Scientific Computing 24, 3 (2002), 796817.Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. [24] Greengard L. and Gropp W. D.. 1990. A parallel version of the fast multipole method. Computers and Mathematics with Applications 20, 7 (1990), 6371.Google ScholarGoogle ScholarCross RefCross Ref
  25. [25] Greengard L. and Rokhlin V.. 1987. A fast algorithm for particle simulations. Journal of Computational Physics 73 (1987), 325348.Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. [26] Hackbusch W.. 1994. Iterative Solution of Large Sparse Systems. Springer-Verlag New York.Google ScholarGoogle ScholarCross RefCross Ref
  27. [27] Hackbusch W.. 1999. A sparse matrix arithmetic based on \(\mathcal {H}\)-Matrices. Part I: Introduction to \(\mathcal {H}\)-Matrices. Computing 62, 2 (1999), 89108.Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. [28] Hackbusch W.. 2015. Hierarchical Matrices: Algorithms and Analysis. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  29. [29] Hackbusch W., Khoromskij B. N., and Sauter S. A.. 2000. On \(\mathcal {H}^2\)-Matrices. In Proceedings of the Lectures on Applied Mathematics. Bungartz H., Hoppe R., and Zenger C. (Eds.), Springer-Verlag, Berlin, 929.Google ScholarGoogle ScholarCross RefCross Ref
  30. [30] Hackbusch W. and Nowak Z. P.. 1989. On the fast matrix multiplication in the boundary element method by panel clustering. Numerische Mathematik 54, 4 (1989), 463491.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. [31] Harbrecht H. and Schneider R.. 2006. Wavelet Galerkin schemes for boundary integral equations – Implementation and quadrature. SIAM Journal on Scientific Computing 27 (2006), 13471370.Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. [32] Langer U., Pusch D., and Reitzinger S.. 2003. Efficient preconditioners for boundary element matrices based on grey-box algebraic multigrid methods. International Journal for Numerical Methods in Engineering 58, 13 (2003), 19371953.Google ScholarGoogle ScholarCross RefCross Ref
  33. [33] Lashuk I., Chandramowlishwaran A., Langston H., Nguyen T.-H., Sampath R., Shingarpure A., Vuduc R., Ying L., Zorin D., and Biros G.. 2012. A massively parallel adaptive fast multipole method on heterogeneous architectures. Communications of the ACM 55, 5 (2012), 101109.Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. [34] Lingg M. P., Hughey S. M., Aktulga H. M., and Shanker B.. 2020. High Performance Evaluation of Helmholtz Potentials using the Multi-Level Fast Multipole Algorithm. Technical Report.Google ScholarGoogle Scholar
  35. [35] Lukáš D., Kovář P., Kovářová T., and Merta M.. 2015. A parallel fast boundary element method using cyclic graph decompositions. Numerical Algorithms 70 (2015), 807824.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. [36] Ohno Y., Yokota R., Koyama H., Morimoto G., Hasegawa A., Masumoto G., Okimoto N., Hirano Y., Ibeid H., Narumi T., and Taiji M.. 2014. Petascale molecular dynamics simulation using the fast multipole method on K computer. Computer Physics Communications 185, 10 (2014), 25752585.Google ScholarGoogle ScholarCross RefCross Ref
  37. [37] Rokhlin V.. 1985. Rapid solution of integral equations of classical potential theory. Journal of Computational Physics 60 (1985), 187207.Google ScholarGoogle ScholarCross RefCross Ref
  38. [38] Saad Y.. 2003. Iterative Methods for Sparse Linear Systems (2nd. Ed.). Society for Industrial Mathematics.Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. [39] Sauter S. A.. 1996. Cubature techniques for 3-d Galerkin BEM. In Proceedings of the Boundary Elements: Implementation and Analysis of Advanced Algorithms. Hackbusch W. and Wittum G. (Eds.), Vieweg-Verlag, 2944.Google ScholarGoogle ScholarCross RefCross Ref
  40. [40] Sauter S. A.. 2000. Variable order panel clustering. Computing 64 (2000), 223261.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. [41] Sauter S. A. and Schwab C.. 2011. Boundary Element Methods. Springer.Google ScholarGoogle ScholarCross RefCross Ref
  42. [42] Steinbach O. and Wendland W. L.. 1998. The construction of some efficient preconditioners in the boundary element method. Advances in Computational Mathematics 9 (1998), 191216.Google ScholarGoogle ScholarCross RefCross Ref
  43. [43] Tausch J.. 2004. A variable order wavelet method for the sparse representation of layer potentials in the non-standard form. J. Journal of Numerical Mathematics 12, 3 (2004), 233254.Google ScholarGoogle ScholarCross RefCross Ref
  44. [44] Tyrtyshnikov E. E.. 2000. Incomplete cross approximation in the mosaic-skeleton method. Computing 64 (2000), 367380.Google ScholarGoogle ScholarDigital LibraryDigital Library
  45. [45] Petersdorff T. von and Stephan E. P.. 1992. Multigrid solvers and preconditioners for first kind integral equations. Numerical Methods for Partial Differential Equations 8, 5 (1992), 443450.Google ScholarGoogle ScholarCross RefCross Ref
  46. [46] Warren M. S. and Salmon J.. 1992. Astrophysical N-body simulations using hierarchical tree data structures. In Proceedings of the 1992 ACM/IEEE Conference on Supercomputing. Werner R. (Ed.), 570576.Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Distributed ℋ2-Matrices for Boundary Element Methods

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Published in

        cover image ACM Transactions on Mathematical Software
        ACM Transactions on Mathematical Software  Volume 49, Issue 2
        June 2023
        275 pages
        ISSN:0098-3500
        EISSN:1557-7295
        DOI:10.1145/3604595
        Issue’s Table of Contents

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 15 June 2023
        • Online AM: 1 February 2023
        • Accepted: 17 January 2023
        • Revised: 31 December 2022
        • Received: 10 March 2022
        Published in toms Volume 49, Issue 2

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
      • Article Metrics

        • Downloads (Last 12 months)117
        • Downloads (Last 6 weeks)9

        Other Metrics

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      View Full Text