Skip to main content

Advertisement

Log in

Role of secretomes in cell-free therapeutic strategies in regenerative medicine

  • Full Length Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

After an injury, peripheral nervous system neurons have the potential to rebuild their axons by generating a complicated activation response. Signals from the damaged axon are required for this genetic transition to occur. Schwann cells (SCs) near a damaged nerve's distal stump also play a role in the local modulation of axonal programs, not only via cell-to-cell contacts but also through secreted signals (the secretome). The secretome is made up of all the proteins that the cell produces, such as cytokines, growth factors, and extracellular vesicles. The released vesicles may carry signaling proteins as well as coding and regulatory RNAs, allowing for multilayer communication. The secretome of SCs is now well understood as being critical for both orchestrating Wallerian degeneration and maintaining axonal regeneration. As a consequence, secretome has emerged as a feasible tissue regeneration alternative to cell therapy. Separate SC secretome components have been used extensively in the lab to promote peripheral nerve regeneration after injury. However, in neurological therapies, the secretome generated by mesenchymal (MSC) or other derived stem cells has been the most often used. In fact, the advantages of cell treatment have been connected to the release of bioactive chemicals and extracellular vesicles, which make up MSCs' secretome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  • Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH (2018) Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev Rep 14:484–499

    Article  CAS  Google Scholar 

  • Al-Saedi HF, Ghanimi HA, Khoshnazar SM, Abdolmaleki A (2022a) Neuroprotective effects of celastrol on sciatic nerve transection model in male Wistar rats. Iran J Basic Med Sci 25

  • Al‐Saedi, H.F., Panahi, Y., Ghanimi, H.A., Abdolmaleki, A., Asadi, A (2022b) Enhancement of nerve regeneration with nimodipine treatment after sciatic nerve injury. Fund Clin Pharmacol

  • Alsmadi NZ, Bendale GS, Kanneganti A, Shihabeddin T, Nguyen AH, Hor E, Dash S, Johnston B, Granja-Vazquez R, Romero-Ortega MI (2018) Glial-derived growth factor and pleiotrophin synergistically promote axonal regeneration in critical nerve injuries. Acta Biomater 78:165–177

    Article  CAS  Google Scholar 

  • Anand S, Desai V, Alsmadi N, Kanneganti A, Nguyen DH-T, Tran M, Patil L, Vasudevan S, Xu C, Hong Y (2017) Asymmetric sensory-motor regeneration of transected peripheral nerves using molecular guidance cues. Sci Rep 7:1–17

    Article  Google Scholar 

  • Andersen E, Ingerslev LR, Fabre O, Donkin I, Altıntaş A, Versteyhe S, Bisgaard T, Kristiansen VB, Simar D, Barrès R (2019) Preadipocytes from obese humans with type 2 diabetes are epigenetically reprogrammed at genes controlling adipose tissue function. Int J Obes 43:306–318

    Article  CAS  Google Scholar 

  • Azeez SH, Jafar SN, Aziziaram Z, Fang L, Mawlood AH, Ercisli MF (2021) Insulin-producing cells from bone marrow stem cells versus injectable insulin for the treatment of rats with type I diabetes. Cell Mol Biomed Rep 1:42–51

    Article  Google Scholar 

  • Bari E, Perteghella S, Di Silvestre D, Sorlini M, Catenacci L, Sorrenti M, Marrubini G, Rossi R, Tripodo G, Mauri PJC (2018) Pilot production of mesenchymal stem/stromal freeze-dried secretome for cell-free regenerative nanomedicine: a validated GMP-compliant process. Cells 7:190

    Article  CAS  Google Scholar 

  • Basu J, Ludlow JW (2016) Exosomes for repair, regeneration and rejuvenation. Expert Opin Biol Ther 16:489–506

    Article  CAS  Google Scholar 

  • Beer L, Mildner M, Ankersmit HJ (2017) Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann Transl Med 5:170

    Article  Google Scholar 

  • Bendale GS (2019) Growth Factor Enriched Multi-luminal Conduits for Axonal Regeneration and Maturation Across Critical Nerve Injuries. The University of Texas at Dallas, Dallas

    Google Scholar 

  • Brini AT, Amodeo G, Ferreira LM, Milani A, Niada S, Moschetti G, Franchi S, Borsani E, Rodella LF, Panerai AE (2017) Therapeutic effect of human adipose-derived stem cells and their secretome in experimental diabetic pain. Sci Rep 7:1–15

    Article  Google Scholar 

  • Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR (2019) Mesenchymal stem cells: cell therapy and regeneration potential. J Tissue Eng Regen Med 13:1738–1755

    Article  CAS  Google Scholar 

  • Bruno S, Chiabotto G, Favaro E, Deregibus MC, Camussi G (2019) Role of extracellular vesicles in stem cell biology. Am J Physiol Cell Physiol 317:C303–C313

    Article  CAS  Google Scholar 

  • Cattin A-L, Burden JJ, Van Emmenis L, Mackenzie FE, Hoving JJ, Calavia NG, Guo Y, McLaughlin M, Rosenberg LH, Quereda VJC (2015) Macrophage-induced blood vessels guide schwann cell-mediated regeneration of peripheral nerves. Cell 162:1127–1139

    Article  CAS  Google Scholar 

  • Ching RC, Wiberg M, Kingham PJ, Therapy, (2018) Schwann cell-like differentiated adipose stem cells promote neurite outgrowth via secreted exosomes and RNA transfer. Stem Cell Res Ther 9:1–12

    Article  Google Scholar 

  • Contreras E, Bolívar S, Navarro X, Udina E (2022) New insights into peripheral nerve regeneration: the role of secretomes. 114069

  • DeFrancesco-Lisowitz A, Lindborg J, Niemi J, Zigmond RJN (2015) The neuroimmunology of degeneration and regeneration in the peripheral nervous system. Neuroscience 302:174–203

    Article  CAS  Google Scholar 

  • Dubey NK, Mishra VK, Dubey R, Deng Y-H, Tsai F-C, Deng W-P (2018) Revisiting the advances in isolation, characterization and secretome of adipose-derived stromal/stem cells. Int J Mol Sci 19:2200

    Article  Google Scholar 

  • Ebrahimi A, Abbasi P, Cucchiarini M (2020) Exploring the role of stem cells in cancer development and progression. Ann Cancer Res Therapy 28:3–8

    Article  Google Scholar 

  • Fairbairn NG, Meppelink AM, Ng-Glazier J, Randolph MA, Winograd JM (2015) Augmenting peripheral nerve regeneration using stem cells: a review of current opinion. World J Stem Cells 7:11

    Article  Google Scholar 

  • Faroni A, Mobasseri SA, Kingham PJ, Reid AJ (2015) Peripheral nerve regeneration: experimental strategies and future perspectives. Adv Drug Deliv Rev 82:160–167

    Article  Google Scholar 

  • Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM (2018) Mesenchymal stromal cell secretome: influencing therapeutic potential by cellular pre-conditioning. Front Immunol 9:2837

    Article  CAS  Google Scholar 

  • Fiore A, Murray PJ (2021) Tryptophan and indole metabolism in immune regulation. Curr Opin Immunol 70:7–14

    Article  CAS  Google Scholar 

  • Fix DK, Mahmassani ZS, Petrocelli JJ, de Hart NM, Ferrara PJ, Painter JS, Nistor G, Lane TE, Keirstead HS, Drummond MJ (2021) Reversal of deficits in aged skeletal muscle during disuse and recovery in response to treatment with a secrotome product derived from partially differentiated human pluripotent stem cells. GeroScience 43:2635–2652

    Article  CAS  Google Scholar 

  • Frese L, Dijkman PE, Hoerstrup SP (2016) Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother 43:268–274

    Article  Google Scholar 

  • Galderisi U, Peluso G, Di Bernardo G (2022) Clinical trials based on mesenchymal stromal cells are exponentially increasing: where are we in recent years? Stem Cell Rev Rep 18:23–36

    Article  Google Scholar 

  • García-Fernández, P., Üçeyler, N., Sommer, C., 2021. From the low-density lipoprotein receptor–related protein 1 to neuropathic pain: a potentially novel target Pain Rep 6.

  • Ghayour MB, Abdolmaleki A, Fereidoni M (2015) Use of stem cells in the regeneration of peripheral nerve injuries: an overview. Neurosci J Shefaye Khatam 3:84–98

    Article  Google Scholar 

  • Gomez-Sanchez JA, Pilch KS, van der Lans M, Fazal SV, Benito C, Wagstaff LJ, Mirsky R, Jessen KRJ (2017) After nerve injury, lineage tracing shows that myelin and Remak Schwann cells elongate extensively and branch to form repair Schwann cells, which shorten radically on remyelination. J Neurosci 37:9086–9099

    Article  CAS  Google Scholar 

  • Grote K, Petri M, Liu C, Jehn P, Spalthoff S, Kokemüller H, Luchtefeld M, Tschernig T, Krettek C, Haasper C (2013) Toll-like receptor 2/6-dependent stimulation of mesenchymal stem cells promotes angiogenesis by paracrine factors. Eur Cell Mater 26:e79

    Google Scholar 

  • Hajkova M, Jaburek F, Porubska B, Bohacova P, Holan V, Krulova M (2019) Cyclosporine A promotes the therapeutic effect of mesenchymal stem cells on transplantation reaction. Clin Sci 133:2143–2157

    Article  CAS  Google Scholar 

  • Haque N, Rahman MT, Abu Kasim NH, Alabsi AM (2013) Hypoxic culture conditions as a solution for mesenchymal stem cell based regenerative therapy. ScientificWorldJournal 2013

  • Hartwig S, De Filippo E, Göddeke S, Knebel B, Kotzka J, Al-Hasani H, Roden M, Lehr S, Sell H (2019) Exosomal proteins constitute an essential part of the human adipose tissue secretome. BBA Proteins Proteom 1867:140172

    Article  CAS  Google Scholar 

  • Hawkins KE, Sharp TV, McKay TR (2013) The role of hypoxia in stem cell potency and differentiation. Regen Med 8:771–782

    Article  CAS  Google Scholar 

  • Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, Hutson T, Danzi MC, Perry RB-T, Santos CX (2018) Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol 20:307–319

    Article  CAS  Google Scholar 

  • Jauković A, Abadjieva D, Trivanović D, Stoyanova E, Kostadinova M, Pashova S, Kestendjieva S, Kukolj T, Jeseta M, Kistanova E (2020) Specificity of 3D MSC spheroids microenvironment: impact on MSC behavior and properties. Stem Cell Rev Rep 16:853–875

    Article  Google Scholar 

  • Jeske R, Yuan X, Fu Q, Bunnell BA, Logan TM, Li Y (2021) In vitro culture expansion shifts the immune phenotype of human adipose-derived mesenchymal stem cells. Front Immunol 12:621744

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2019) The success and failure of the Schwann cell response to nerve injury. Front Cell Neurosci 33

  • Kalkhof S, Büttner P, Krieg L, Wabitsch M, Küntzel C, Friebe D, Landgraf K, Hanschkow M, Schubert K, Kiess W (2020) In depth quantitative proteomic and transcriptomic characterization of human adipocyte differentiation using the SGBS cell line. Proteomics 20:1900405

    Article  CAS  Google Scholar 

  • Kaplan BB, Kar AN, Gioio AE, Aschrafi A (2013) MicroRNAs in the axon and presynaptic nerve terminal. Front Cell Neurosci 7:126

    Article  CAS  Google Scholar 

  • Kaprio T, Rasila T, Hagström J, Mustonen H, Lankila P, Haglund C, Andersson LC (2019) Ornithine decarboxylase antizyme inhibitor 2 (AZIN2) is a signature of secretory phenotype and independent predictor of adverse prognosis in colorectal cancer. PLoS ONE 14:e0211564

    Article  CAS  Google Scholar 

  • Khan AA, Hansson J, Weber P, Foehr S, Krijgsveld J, Herzig S, Scheideler M (2018) Comparative secretome analyses of primary murine white and brown adipocytes reveal novel adipokines. Mol Cell Proteomics 17:2358–2370

    Article  CAS  Google Scholar 

  • Kim D-K, Nishida H, An SY, Shetty AK, Bartosh TJ, Prockop DJ (2016) Chromatographically isolated CD63+ CD81+ extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci USA 113:170–175

    Article  CAS  Google Scholar 

  • Kwon YW, Heo SC, Jeong GO, Yoon JW, Mo WM, Lee MJ, Jang I-H, Kwon SM, Lee JS, Kim JH (2013) Tumor necrosis factor-α-activated mesenchymal stem cells promote endothelial progenitor cell homing and angiogenesis. Biochim Biophys Acta 1832:2136–2144

    Article  CAS  Google Scholar 

  • López-Leal R, Díaz-Viraqué F, Catalán RJ, Saquel C, Enright A, Iraola G, Court FAJ (2020) Schwann cell reprogramming into repair cells increases miRNA-21 expression in exosomes promoting axonal growth. J Cell Sci 133:0239004

    Article  Google Scholar 

  • Lopez-Verrilli MA (2013) Exosomes: mediators of communication in eukaryotes. Biol Res 46:5–11

    Article  Google Scholar 

  • Lu Z, Wang G, Dunstan CR, Chen Y, Yenn-Rulu W, Davies B, Zreiqat HJ (2013) Activation and promotion of adipose stem cells by tumour necrosis factor-alpha preconditioning for bone regeneration. J Cell Physiol 228:1737–1744

    Article  CAS  Google Scholar 

  • Lumniczky K, Persa E, Tapio S, Subedi P, D9.95-Evaluating radiation effects on EV phenotype and cargo

  • Lv L, Sheng C, Zhou YJ (2020) Extracellular vesicles as a novel therapeutic tool for cell-free regenerative medicine in oral rehabilitation. J Oral Rehabil 47:29–54

    Article  CAS  Google Scholar 

  • Maguire G (2013) Stem cell therapy without the cells. Commun Integr Biol 6:e26631

    Article  Google Scholar 

  • Mao P, Li C, Zhang S, Zhang Y, Liu B, Fan BJ (2018) Transcriptomic differential lncRNA expression is involved in neuropathic pain in rat dorsal root ganglion after spared sciatic nerve injury. 51

  • Moghadasi S, Elveny M, Rahman HS, Suksatan W, Jalil AT, Abdelbasset WK, Yumashev AV, Shariatzadeh S, Motavalli R, Behzad F (2021) A paradigm shift in cell-free approach: the emerging role of MSCs-derived exosomes in regenerative medicine. J Transl Med 19:1–21

    Article  Google Scholar 

  • Msheik Z, El Massry M, Rovini A, Billet F, Desmoulière A (2022) The macrophage: a key player in the pathophysiology of peripheral neuropathies. J Neuroinflammation 19:1–18

    Article  Google Scholar 

  • Negi N, Griffin MD (2020) Effects of mesenchymal stromal cells on regulatory T cells: current understanding and clinical relevance. Stem Cells 38:596–605

    Article  Google Scholar 

  • Nguyen D, Sulaiman OA (2019) Transforming growth factor beta 1 regulates fibroblast growth factor 7 expression in Schwann cells. Ochsner J 19:7–12

    Article  Google Scholar 

  • Nieto-Nicolau N, López-Chicón P, Fariñas O, Bolívar S, Udina E, Navarro X, Casaroli-Marano R, Vilarrodona A (2021) Effective decellularization of human nerve matrix for regenerative medicine with a novel protocol. Cell Tissue Res 384:167–177

    Article  CAS  Google Scholar 

  • Orgun D, Mizuno H (2017) Multipotency and secretome: the mechanisms behind the regenerative potential of adipose-derived stem cells. Plast Aesthet Res 4:32–40

    Article  Google Scholar 

  • Osking Z, Ayers JI, Hildebrandt R, Skruber K, Brown H, Ryu D, Eukovich AR, Golde TE, Borchelt DR (2018) ALS-linked SOD1 mutants enhance outgrowth, branching, and the formation of actin-based structures in adult motor neurons. iScience 303271

  • Phelps J, Sanati-Nezhad A, Ungrin M, Duncan NA, Sen A (2018) Bioprocessing of mesenchymal stem cells and their derivatives: toward cell-free therapeutics. Stem Cells Int 2018

  • Pogodziński D, Ostrowska L, Smarkusz-Zarzecka J, Zyśk B (2022) Secretome of adipose tissue as the key to understanding the endocrine function of adipose tissue. Int J Mol Sci 23:2309

    Article  Google Scholar 

  • Qing L, Chen H, Tang J, Jia X (2018) Exosomes and their microRNA cargo: new players in peripheral nerve regeneration. Neurorehabil Neural Repair 32:765–776

    Article  Google Scholar 

  • Rajendran L, Bali J, Barr MM, Krämer-Albers E-M, Picou F, Raposo G, Van Der Vos KE, Van Niel G, Wang J, Breakefield XO (2014) Emerging roles of extracellular vesicles in the nervous system. J Neurosci 34:15482–15489

    Article  Google Scholar 

  • Ranganath SH, Tong Z, Levy O, Martyn K, Karp JM, Inamdar MS (2016) Controlled inhibition of the mesenchymal stromal cell pro-inflammatory secretome via microparticle engineering. Stem Cell Rep 6:926–939

    Article  CAS  Google Scholar 

  • Robert AW, Angulski ABB, Spangenberg L, Shigunov P, Pereira IT, Bettes PSL, Naya H, Correa A, Dallagiovanna B, Stimamiglio MA (2018) Gene expression analysis of human adipose tissue-derived stem cells during the initial steps of in vitro osteogenesis. Sci Rep 8:1–11

    Article  Google Scholar 

  • Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen XJP (2018) Regeneration of peripheral nerves by nerve guidance conduits: Influence of design, biopolymers, cells, growth factors, and physical stimuli. Prog Neurobiol 171:125–150

    Article  CAS  Google Scholar 

  • Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 168:960–976

    Article  CAS  Google Scholar 

  • Shin S, Lee J, Kwon Y, Park K-S, Jeong J-H, Choi S-J, Bang SI, Chang JW, Lee C (2021a) Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and wharton’s jelly. Int J Mol Sci 22:845

    Article  CAS  Google Scholar 

  • Shin S, Lee J, Kwon Y, Park K-S, Jeong J-H, Choi S-J, Bang SI, Chang JW, Lee C (2021b) Comparative proteomic analysis of the mesenchymal stem cells secretome from adipose, bone marrow, placenta and wharton’s jelly. Int J Mol Sci 22:845

    Article  CAS  Google Scholar 

  • Song P, Kwon Y, Joo J-Y, Kim D-G, Yoon JH (2019) Secretomics to discover regulators in diseases. Int J Mol Sci 20:3893

    Article  CAS  Google Scholar 

  • Stamnitz S, Klimczak A (2021) Mesenchymal stem cells, bioactive factors, and scaffolds in bone repair: from research perspectives to clinical practice. Cells 10:1925

    Article  CAS  Google Scholar 

  • Sumarwoto T, Suroto H, Mahyudin F, Utomo DN, Tinduh D, Notobroto HB, Prakoeswa CRS, Rantam FA, Rhatomy S (2021) Role of adipose mesenchymal stem cells and secretome in peripheral nerve regeneration. Ann Med Surg (lond) 67:102482

    Article  Google Scholar 

  • Tang BL (2018) Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res Bull 143:123–131

    Article  CAS  Google Scholar 

  • Tannemaat MR, Eggers R, Hendriks WT, De Ruiter GC, Van Heerikhuize JJ, Pool CW, Malessy MJ, Boer GJ, Verhaagen J (2008) Differential effects of lentiviral vector-mediated overexpression of nerve growth factor and glial cell line-derived neurotrophic factor on regenerating sensory and motor axons in the transected peripheral nerve. Eur J Neurosci 28:1467–1479

    Article  Google Scholar 

  • Teixeira FG, Salgado AJJ中 (2020) 间充质干细胞的分泌组学: 当前趋势和未来挑战. 15:75

  • Terenzio M, Koley S, Samra N, Rishal I, Zhao Q, Sahoo PK, Urisman A, Marvaldi L, Oses-Prieto JA, Forester CJS (2018) Locally translated mTOR controls axonal local translation in nerve injury. Science 359:1416–1421

    Article  CAS  Google Scholar 

  • Valencia J, Blanco B, Yáñez R, Vázquez M, Sánchez CH, Fernández-García M, Serrano CR, Pescador D, Blanco JF, Hernando-Rodríguez M (2016) Comparative analysis of the immunomodulatory capacities of human bone marrow–and adipose tissue–derived mesenchymal stromal cells from the same donor. Cytotherapy 18:1297–1311

    Article  CAS  Google Scholar 

  • Vishnubhatla I, Corteling R, Stevanato L, Hicks C, Sinden J (2014) The development of stem cell-derived exosomes as a cell-free regenerative medicine. J Circ Biomark 3:3–2

    Article  Google Scholar 

  • Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez RJ (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci Int J Mol Sci 18:1852

    Article  Google Scholar 

  • Wagstaff LJ, Gomez-Sanchez JA, Fazal SV, Otto GW, Kilpatrick AM, Michael K, Wong LY, Ma KH, Turmaine M, Svaren JJE (2021) Failures of nerve regeneration caused by aging or chronic denervation are rescued by restoring Schwann cell c-Jun. Elife 10:e62232

    Article  CAS  Google Scholar 

  • Witwer KW, Théry CJ (2019) Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J Extracell Vesicles 1648167

  • Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X (2020) Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 11:1–16

    Article  CAS  Google Scholar 

  • Yang Y, Lee EH, Yang Z (2022) Hypoxia-conditioned mesenchymal stem cells in tissue regeneration application. Tissue EngB Rev 28(5):966–977

    Article  CAS  Google Scholar 

  • Zang Y, Chaudhari K, Bashaw G (2021) New insights into the molecular mechanisms of axon guidance receptor regulation and signaling. Curr Top Dev Biol 142:147–196

    Article  Google Scholar 

  • Zhao X, Chen S, Tan Z, Wang Y, Zhang F, Yang T, Liu Y, Ao H, Xing K, Wang C (2019) Transcriptome analysis of landrace pig subcutaneous preadipocytes during adipogenic differentiation. Genes 10:552

    Article  CAS  Google Scholar 

  • Zigmond RE, Echevarria FD (2019) Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 173:102–121

    Article  CAS  Google Scholar 

  • Zou Y, Zhang J, Liu J, Xu J, Fu L, Ma X, Xu Y, Xu S, Wang X, Guo JJMN (2021) SIRT6 negatively regulates Schwann cells dedifferentiation via targeting c-Jun during Wallerian degeneration after peripheral nerve injury 1–16

  • Zuk P (2013) Adipose-derived stem cells in tissue regeneration: a review. International Scholarly Research Notices 2013

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Abdolmaleki.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical statement

All experiments were performed under the guidelines of the ethics committee of the University of Mohaghegh Ardabili.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimian, A., Khoshnazar, S.M., Kazemi, T. et al. Role of secretomes in cell-free therapeutic strategies in regenerative medicine. Cell Tissue Bank (2023). https://doi.org/10.1007/s10561-023-10073-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10561-023-10073-5

Keywords

Navigation