Skip to main content
Log in

Ranks based on strong amalgamation Fraïssé classes

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notion of \({\textbf{K}} \)-rank, where \({\textbf{K}} \) is a strong amalgamation Fraïssé class. Roughly speaking, the \({\textbf{K}} \)-rank of a partial type is the number “copies” of \({\textbf{K}} \) that can be “independently coded” inside of the type. We study \({\textbf{K}} \)-rank for specific examples of \({\textbf{K}} \), including linear orders, equivalence relations, and graphs. We discuss the relationship of \({\textbf{K}} \)-rank to other ranks in model theory, including dp-rank and op-dimension (a notion coined by the first author and C. D. Hill in previous work).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodirsky, M.: New ramsey classes from old. Electron. J. Combin. (2012). https://doi.org/10.37236/2566

    Article  MATH  Google Scholar 

  2. Bodirsky, M.: Ramsey classes: examples and constructions. posted on 2015, https://doi.org/10.1017/CBO9781316106853.002

  3. Cameron, P.J.: Oligomorphic permutation groups. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  4. Chernikov, A., Palacin, D., Takeuchi, K.: On n-Dependence. Notre Dame J. Formal Logic 60(2), 195–214 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. El-Zahar, M., Sauer, N.W.: Ramsey-type properties of relational structures. Discret. Math. 94(1), 1–10 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Guingona, V., Hill, C.D.: On a common generalization of Shelah’s 2-rank, dp-rank, and o-minimal dimension. Ann. Pure Appl. Log 166(4), 502–525 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guingona, V., Hill, C.D.: On positive local combinatorial dividing-lines in model theory. Arch. Math. Logic 58, 289–323 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guingona, V., Hill, C.D., Scow, L.: Characterizing model-theoretic dividing lines via collapse of generalized indiscernibles. Ann. Pure Appl. Log 168(5), 1091–1111 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  10. Hrushovski, E.: Groupoids, imaginaries and internal covers. Turk. J. Math. 36, 173–198 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Kaplan, I., Onshuus, A., Usvyatsov, A.: Additivity of the dp-rank. Trans. Amer. Math. Soc. 365, 5783–5804 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Laskowski, M.C.: Vapnik-Chervonenkis classes of definable sets. J. London Math. Soc. 45(2), 377–384 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laskowski, M.C., Shelah, S.: Karp complexity and classes with the independence property. Ann. Pure Appl. Logic 120, 263–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sauer, N.W.: Colouring homogeneous structures (2020). arXiv:2008.02375

  15. Scow, L.: Indiscernibles, EM-types, and ramsey classes of trees. Notre Dame J. Formal Logic 56(3), 429–447 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Simon, P.: Linear orders in NIP structures. Adv. Math. 395, 108069 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Walsburg, E.: Notes on trace equivalence. arXiv:2101.12194

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Guingona.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special thanks to C. D. Hill, D. Ulrich, and the anonymous reviewer.

Appendix A. Combinatorial lemmas

Appendix A. Combinatorial lemmas

Fix \(k < \omega \) and let

$$\begin{aligned} {\mathcal {D}} _k = \{ t \in {}^k \{ -1, 0, 1 \} : t(i) = 1 \text { for } i \text { minimal such that } t(i) \ne 0 \}. \end{aligned}$$

For \({\overline{a}} , {\overline{b}} \in \omega ^k\) and \(t \in {\mathcal {D}} _k\), define

$$\begin{aligned} {\overline{a}} \le _t {\overline{b}} \text { if, for all } i< k, {\left\{ \begin{array}{ll} a_i < b_i &{} \text { if } t(i) = 1, \\ a_i = b_i &{} \text { if } t(i) = 0, \\ a_i > b_i &{} \text { if } t(i) = -1. \end{array}\right. } \end{aligned}$$

Finally, for all \({\overline{a}} , {\overline{b}} \in \omega ^k\), define

$$\begin{aligned} {\overline{a}} \le _\textrm{lex} {\overline{b}} \text { if } a_i < b_i \text { for } i \text { minimal such that } a_i \ne b_i. \end{aligned}$$

Note that \({\overline{a}} \le _\textrm{lex} {\overline{b}} \) if and only if there exists \(t \in {\mathcal {D}} _k\) such that \({\overline{a}} \le _t {\overline{b}} \).

Lemma A.1

For all \(k, \ell , m < \omega \), there exists \(n < \omega \) such that, for all colorings \(c : \left( {\begin{array}{c}n^k\\ \le 2\end{array}}\right) \rightarrow \ell \), there exist \(Y_0, \dots , Y_{k-1} \in \left( {\begin{array}{c}n\\ m\end{array}}\right) \) such that, for all \(t \in {\mathcal {D}} _k\), c is constant on the set

$$\begin{aligned} X_t = \left\{ \{ {\overline{a}} , {\overline{b}} \} : {\overline{a}} , {\overline{b}} \in \prod _{i < k} Y_i, {\overline{a}} \le _t {\overline{b}} \right\} . \end{aligned}$$

Proof

By induction on k. Let \(k = 1\) and fix \(\ell , m < \omega \). By Ramsey’s Theorem, there exists n such that, for all colorings \(c : \left( {\begin{array}{c}n\\ \le 2\end{array}}\right) \rightarrow \ell \), there exists \(Y \in \left( {\begin{array}{c}n\\ m\end{array}}\right) \) such that c is constant on \(\left( {\begin{array}{c}Y\\ 1\end{array}}\right) \) and c is constant on \(\left( {\begin{array}{c}Y\\ 2\end{array}}\right) \). Since \(X_0 = \left( {\begin{array}{c}Y\\ 1\end{array}}\right) \) and \(X_{1} = \left( {\begin{array}{c}Y\\ 2\end{array}}\right) \), this is the desired conclusion.

Fix \(k, m, \ell < \omega \). Let

$$\begin{aligned} \ell ' = {}^{{\mathcal {D}} _k \times \{ -1, 1 \}} \ell . \end{aligned}$$

By Ramsey’s Theorem, there exists \(n' < \omega \) such that, for all colorings \(c' : \left( {\begin{array}{c}n'\\ \le 2\end{array}}\right) \rightarrow \ell '\), there exists \(Y_k \in \left( {\begin{array}{c}n'\\ m\end{array}}\right) \) such that \(c'\) is constant on \(\left( {\begin{array}{c}Y_k\\ 1\end{array}}\right) \) and \(c'\) is constant on \(\left( {\begin{array}{c}Y_k\\ 2\end{array}}\right) \). Let

$$\begin{aligned} \ell '' = {}^{(n')^2} \ell . \end{aligned}$$

By the inductive hypothesis, there exists \(n'' < \omega \) such that, for all colorings \(c'' : \left( {\begin{array}{c}(n'')^k\\ \le 2\end{array}}\right) \rightarrow \ell ''\), there exist \(Y_0, \dots , Y_{k-1} \in \left( {\begin{array}{c}n''\\ m\end{array}}\right) \) such that, for all \(t \in {\mathcal {D}} _k\), \(c''\) is constant on \(X_t\). Let \(n = \max \{ n', n'' \}\).

Fix a coloring \(c : \left( {\begin{array}{c}n^{k+1}\\ \le 2\end{array}}\right) \rightarrow \ell \). This induces a coloring \(c'' : \left( {\begin{array}{c}(n'')^k\\ \le 2\end{array}}\right) \rightarrow \ell ''\) given by: for each \({\overline{a}} , {\overline{b}} \in (n'')^k\) with \({\overline{a}} \le _\textrm{lex} {\overline{b}} \), for each \(i, j \in n'\), let

$$\begin{aligned} c''( \{ {\overline{a}} , {\overline{b}} \} )(i, j) = c( \{ {\overline{a}} {}^{\frown } i, {\overline{b}} {}^{\frown } j \} ). \end{aligned}$$

Thus, there exist \(Y_0, \dots , Y_{k-1} \in \left( {\begin{array}{c}n''\\ m\end{array}}\right) \) such that, for all \(t \in {\mathcal {D}} _k\), \(c''\) is constant on \(X_t\). Now define \(c' : \left( {\begin{array}{c}n'\\ \le 2\end{array}}\right) \rightarrow \ell '\) as follows: for each \(i \le j < n'\), \(t \in {\mathcal {D}} _k\), and \(s \in \{ -1, 1 \}\), choose \({\overline{a}} , {\overline{b}} \in \prod _{i < k} Y_i\) with \({\overline{a}} \le _t {\overline{b}} \) and set

$$\begin{aligned} c'( \{ i, j \} )(t,s) = {\left\{ \begin{array}{ll} c( \{ {\overline{a}} {}^{\frown } i, {\overline{b}} {}^{\frown } j \} ) &{} \text { if } s = 1, \\ c( \{ {\overline{a}} {}^{\frown } j, {\overline{b}} {}^{\frown } i \} ) &{} \text { if } s = -1. \end{array}\right. } \end{aligned}$$

Since \(c''\) is constant on \(X_t\) for each t, this function is independent of the choice of \({\overline{a}} \) and \({\overline{b}} \). Thus, there exists \(Y_k \in \left( {\begin{array}{c}n'\\ m\end{array}}\right) \) such that \(c'\) is constant on \(\left( {\begin{array}{c}Y_k\\ 1\end{array}}\right) \) and \(c'\) is constant on \(\left( {\begin{array}{c}Y_k\\ 2\end{array}}\right) \). We claim that \(Y_0, \dots , Y_k\) work for c.

Fix \(t \in {\mathcal {D}} _{k+1}\). If \(t(k)=0\), let

$$\begin{aligned} r = c'( \{ i \} )(t |_k, 1 ) \end{aligned}$$

for any choice of \(i \in Y_k\). Since \(c'\) is constant on \(\left( {\begin{array}{c}Y_k\\ 1\end{array}}\right) \), this is independent of the choice of i. If \(t(k) \ne 0\), let

$$\begin{aligned} r = c'( \{ i, j \})(t |_k, t(k)) \end{aligned}$$

for any choice of \(i, j \in Y_k\) with \(i < j\). Since \(c'\) is constant on \(\left( {\begin{array}{c}Y_k\\ 2\end{array}}\right) \), this is independent of the choice of i and j. Then, for any \({\overline{a}} , {\overline{b}} \in \prod _{i \le k} Y_i\) such that \({\overline{a}} \le _t {\overline{b}} \), we have that

$$\begin{aligned} c( \{ {\overline{a}} , {\overline{b}} \} ) = r. \end{aligned}$$

This is what we wanted to prove. \(\square \)

Corollary A.2

For all \(k, \ell , m < \omega \), there exists \(n < \omega \) such that, for all colorings \(c : n^k \rightarrow \ell \), there exist \(Y_0, \dots , Y_{k-1} \in \left( {\begin{array}{c}n\\ m\end{array}}\right) \) such that c is constant on \(\prod _{i < k} Y_i\).

Proof

Since any coloring \(c : n^k \rightarrow \ell \) can be extended arbitrarily to a coloring \(c : \left( {\begin{array}{c}n^k\\ \le 2\end{array}}\right) \rightarrow \ell \), this follows immediately from Lemma A.1.

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guingona, V., Parnes, M. Ranks based on strong amalgamation Fraïssé classes. Arch. Math. Logic 62, 889–929 (2023). https://doi.org/10.1007/s00153-023-00864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-023-00864-8

Keywords

Mathematics Subject Classification

Navigation