Skip to main content

Advertisement

Log in

Transient Receptor Potential Mucolipin-1 Participates in Intracerebral Hemorrhage-Induced Secondary Brain Injury by Inducing Neuroinflammation and Neuronal Cell Death

  • Original Paper
  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Transient receptor potential mucolipin-1 (TRPML1) is the most abundantly and widely expressed channel protein in the TRP family. While numerous studies have been conducted involving many aspects of TRPML1, such as its role in cell biology, oncology, and neurodegenerative diseases, there are limited reports about what role it plays in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Here we examined the function of TRPML1 in ICH-induced SBI. The caudal arterial blood of rats was injected into the caudate nucleus of basal ganglia to establish an experimental ICH model. We observed that lentivirus downregulated the expression level of TRPML1 and chemical agonist promoted the enzyme activity of TRPML1. The results indicated that the protein levels of TRPML1 in brain tissues increased 24 h after ICH. These results suggested that downregulated TRPML1 could significantly reduce inflammatory cytokines, and ICH induced the production of LDH and ROS. Furthermore, TRPML1 knockout relieved ICH-induced neuronal cell death and degeneration, and declines in learning and memory after ICH could be improved by downregulating the expression of TRPML1. In addition, chemical agonist-expressed TRPML1 showed the opposite effect and exacerbated SBI after ICH. In summary, this study demonstrated that TRPML1 contributed to brain injury after ICH, and downregulating TRPML1 could improve ICH-induced SBI, suggesting a potential target for ICH therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are not publicly available due to the confidential policy of our hospital but are available from the corresponding author on reasonable request.

References

Download references

Funding

The National Natural Science Foundation of China (No.81830036), the Natural Science Foundation of Jiangsu Province under Grant (No. BK20220096), the Suzhou Science and Technology (No. SS2019056), Jiangsu Commission of Health (No. K2019001), Suzhou Key Medical Center (No. Szzx201501), and Suzhou Government (No. SYS2019045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanchun You or Xi’an Fu.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

All protocols for laboratory animals are approved by the Animal Care and Use Committee of Soochow University and implemented in accordance with the manuals of the National Institutes of Health. The ethical approval reference number is 2018-198.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Li, X., Ding, J. et al. Transient Receptor Potential Mucolipin-1 Participates in Intracerebral Hemorrhage-Induced Secondary Brain Injury by Inducing Neuroinflammation and Neuronal Cell Death. Neuromol Med 25, 272–285 (2023). https://doi.org/10.1007/s12017-023-08734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12017-023-08734-5

Keywords

Navigation