Skip to main content
Log in

Antimicrobial, antioxidant, cytotoxicity and photocatalytic performance of Co doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

In the present study, ZnO nanoparticles doped with 3%, 5% and 7% of cobalt have been synthesized by green method using Annona muricata leaf extract. The obtained nanopowder was characterised by XRD, FTIR, XPS, HRTEM, SAED, SEM, EDAX and UV–Visible spectroscopy techniques. XRD patterns confirm the formation of pure and Co doped ZnO nanoparticles with a hexagonal wurtzite structure with high phase purity. FTIR spectra indicate the stretching vibration of Zn–O at 495 cm−1. The incorporation of Co2+ ions into the ZnO lattice was identified by XPS analysis. EDX spectra confirm the existence of Co, Zn and O elements. The SEM and HRTEM micrographs show morphology of nanoparticles. The optical study specifies a decrease in energy band gap with an increase in Co-doping concentration. The photocatalytic performance of ZnO and Zn0.93Co0.07O has been examined for the degradation of methylene blue (MB) under sunlight irradiation. The antimicrobial activity of synthesized nanoparticles against s.aureus, p.aeruginosa, b.subtilis bacterial strains c.albicans and a.niger fungal strains as investigated. The Zn0.93Co0.07O nanoparticles exhibit good antioxidant properties. Moreover, the cytotoxicity of ZnO nanoparticles was evaluated against L929 normal fibroblast cells. So, this work suggests that Annona muricata leaf extract mediated pure and Co-doped ZnO nanoparticles are a potential candidate for biomedical and photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available upon reasonable request from the authors.

References

  1. Rani H, Prakash S, Prasad T, Sajid M, Israil M, Kumar A. In-vitro catalytic, antimicrobial and antioxidant activities of bioengineered copper quantum dots using Mangifera indica (L.) leaf extract. Mater Chem Phys. 2020;239:122052. https://doi.org/10.1016/j.matchemphys.2019.122052.

    Article  CAS  Google Scholar 

  2. Ullah I, Tahir K, Ullah A, Albalawi K, Li B. Facile fabrication of Ag nanoparticles: An advanced material for antioxidant, infectious therapy and photocatalytic applications Facile fabrication of Ag nanoparticles: An advanced material for antioxidant , infectious therapy and photocatalytic applications. Inorg Chem Commun. 2022;141:109539. https://doi.org/10.1016/j.inoche.2022.109539.

    Article  CAS  Google Scholar 

  3. Ahmad B, Khan MI, Naeem MA, Alhodaib A, Fatima M, Amami M, et al. Green synthesis of NiO nanoparticles using Aloe vera gel extract and evaluation of antimicrobial activity. Mater Chem Phys. 2022;288:126363. https://doi.org/10.1016/j.matchemphys.2022.126363.

    Article  CAS  Google Scholar 

  4. Zhang L, Ding Y, Povey M, York D. ZnO nanofluids – A potential antibacterial agent. Prog Nat Sci. 2008;18:939–44.

    Article  CAS  Google Scholar 

  5. Nazir A, Akbar A, Baghdadi HB, Rehman S, Al-Abbad E, Fatima M, et al. Zinc oxide nanoparticles fabrication using Eriobotrya japonica leaves extract: Photocatalytic performance and antibacterial activity evaluation. Arab J Chem. 2021;14:103251. https://doi.org/10.1016/j.arabjc.2021.103251.

    Article  CAS  Google Scholar 

  6. Zaman QU, Anwar S, Mehmood F, Nawaz R, Masood N, Nazir A, et al. Experimental modeling, optimization and comparison of coagulants for removal of metallic pollutants from wastewater. Zeitschrift fur Phys Chemie. 2021;235:1041–53.

    Article  CAS  Google Scholar 

  7. Bokhari TH, Mustafa G, Ahmed N, Usman M, Akram N, Ul Haq A, et al. Degradation of a pigment red 238 using UV, UV/H2 O2, UV/H2 O2/SnO2 and Fenton processes. Polish J Environ Stud. 2022;31:619–23.

    Article  CAS  Google Scholar 

  8. Nadeem MS, Munawar T, Mukhtar F, Naveed ur Rahman M, Riaz M, Iqbal F. Enhancement in the photocatalytic and antimicrobial properties of ZnO nanoparticles by structural variations and energy bandgap tuning through Fe and Co co-doping. Ceram Int. 2021;47:11109–21. https://doi.org/10.1016/j.ceramint.2020.12.234.

    Article  CAS  Google Scholar 

  9. Bukhari A, Atta M, Nazir A, Anees-Ur-Rahman, Shahab MR, Kanwal Q, et al. Catalytic degradation of MO and MB dyes under solar and UV light irradiation using ZnO fabricated using Syzygium Cumini leaf extract. Zeitschrift fur Phys Chemie. 2022;236:659–71.

    Article  CAS  Google Scholar 

  10. Iqbal M, Shar GA, Ibrahim SM, Iftikhar S, Asif M, Khan MI, et al. Synthesis and characterization of heterostructured nanoparticle for efficient photocatalytic performance for dye degradation. Zeitschrift fur Phys Chemie. 2021;235:1209–26.

    Article  CAS  Google Scholar 

  11. Noreen S, Zafar S, Bibi I, Amami M, Raza MAS, Alshammari FH, et al. ZnO, Al/ZnO and W/Ag/ZnO nanocomposite and their comparative photocatalytic and adsorptive removal for Turquoise Blue Dye. Ceram Int. 2022;48:12170–83. https://doi.org/10.1016/j.ceramint.2022.01.078.

    Article  CAS  Google Scholar 

  12. Isa EDM, Shameli K, Jusoh NWC, Hazan R. Rapid photodecolorization of methyl orange and rhodamine B using zinc oxide nanoparticles mediated by pullulan at different calcination conditions. J Nanostructure Chem. 2021;11:187–202. https://doi.org/10.1007/s40097-020-00358-6.

    Article  CAS  Google Scholar 

  13. Sharwani AA, Narayanan KB, Khan ME, Han SS. Photocatalytic degradation activity of goji berry extract synthesized silver-loaded mesoporous zinc oxide (Ag@ZnO) nanocomposites under simulated solar light irradiation. Sci Rep. 2022;12:1–18. https://doi.org/10.1038/s41598-022-14117-w.

    Article  CAS  Google Scholar 

  14. Supriya S, Prerna DI, Santhiya P, Kannan M, Riyaz SUM. Solid state synthesis, characterization of gold nanoparticles-thymoquinone and its molecular docking studies against virulent M. Tuberculosis H37Rv strain protein and WSSV envelope protein VP28. Mater Sci Eng B. 2023;288:116187. https://doi.org/10.1016/j.mseb.2022.116187.

    Article  CAS  Google Scholar 

  15. Iqbal DN, Ehtisham-ul-Haque S, Ahmad S, Arif K, Hussain EA, Iqbal M, et al. Enhanced antibacterial activity of chitosan, guar gum and polyvinyl alcohol blend matrix loaded with amoxicillin and doxycycline hyclate drugs. Arab J Chem. 2021;14:103156. https://doi.org/10.1016/j.arabjc.2021.103156.

    Article  CAS  Google Scholar 

  16. Al-Dhabi NA, Arasu MV. Environmentally-friendly green approach for the production of zinc oxide nanoparticles and their anti-fungal, ovicidal, and larvicidal properties. Nanomaterials. 2018;8:279.

    Article  Google Scholar 

  17. Verbic A, Gorjanc M, Simoncic B. Zinc oxide for functional textile coatings: recent advances. Coatings. 2019;550:17–23.

    Google Scholar 

  18. Throne-Holst H, Randles S, Greiffenhagen C, Strandbakken P, Stø E. Risk, Responsibility, Rights, Regulation and Representation in the Value Chain of Nano-products. Technoscience Prog Manag Uncertain Nanotechnol. IOS Press; 2009;31–52. https://ebooks.iospress.nl/doi/10.3233/978-1-60750-022-3-31.

  19. Vindhya PS, Kunjikannan R, Kavitha VT. Photocatalytic and antimicrobial activities of pure and Mn doped ZnO nanoparticles synthesised by Annona Muricata leaf extract. Int J Environ Anal Chem. 2022;1–16. https://doi.org/10.1080/03067319.2022.2118581.

  20. Türkyılmaz ŞŞ, Güy N, Özacar M. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. J Photochem Photobiol A Chem. 2017;341:39–50.

    Article  Google Scholar 

  21. Gao Q, Dai Y, Li X, Yang L, Cui C, Li C. Effects of Mn dopant on tuning carrier concentration in Mn doped ZnO nanoparticles synthesized by co-precipitation technique. J Mater Sci Mater Electron. 2018;29:3568–75. https://doi.org/10.1007/s10854-017-8286-3.

    Article  CAS  Google Scholar 

  22. Zelekew OA, Aragaw SG, Sabir FK, Andoshe DM, Duma AD, Kuo DH, Chen X, Desissa TD, Tesfamariam BB, Feyisa GB, Abdullah H. Green synthesis of Co-doped ZnO via the accumulation of cobalt ionontoEichhornia crassipesplant tissue and the photocatalyticdegradation efficiency under visible light. Mater Res Express. 2021;8(2): 025010.

    Article  CAS  Google Scholar 

  23. Lee HJ, Kim JH, Park SS, Hong SS, Lee GD. Degradation kinetics for photocatalytic reaction of methyl orange over Al-doped ZnO nanoparticles. J Ind Eng Chem. 2015;25:199–206.

    Article  CAS  Google Scholar 

  24. Reddy IN, Reddy CV, Shim J, BhAkkinepally M, Cho K Yoo, Kim D. Excellent visible-light driven photocatalyst of (Al, Ni) co-doped ZnO structures for organic dye degradation. Catal Today. 2020;340:277–85. https://doi.org/10.1016/j.cattod.2018.07.030.

    Article  CAS  Google Scholar 

  25. Dhanalakshmi A, Natarajan B, Ramadas V, Palanimurugan A, Thanikaikarasan S. Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles. Pramana - J Phys. 2016;87:1–9.

    Article  CAS  Google Scholar 

  26. Vindhya PS, Jeyasingh T, Kavitha VT. Dielectric properties of copper oxide nanoparticles using AnnonaMuricata leaf. AIP Conference proceedings. 2019; 2162: 020021. http://aip.scitation.org/doi/abs/10.1063/1.5130231

  27. Gunalan S, Sivaraj R, Rajendran V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog Nat Sci Mater Int. 2012;22(6):693–700.

    Article  Google Scholar 

  28. Ali F, Hamza M, Iqbal M, Basha B, Alwadai N, Nazir A. State-of-art of silver and gold nanoparticles synthesis routes, characterization and applications: A review. Zeitschrift fur Phys Chemie. 2022;236:291–326.

    Article  CAS  Google Scholar 

  29. Coria-Téllez AV, Montalvo-Gónzalez E, Yahia EM, Obledo-Vázquez EN. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J Chem. 2018;11:662–91.

    Article  Google Scholar 

  30. Vindhya PS, Kunjikannan R, Kavitha VT. Bio-fabrication of Ni doped ZnO nanoparticles using Annona Muricata leaf extract and investigations of their antimicrobial, antioxidant and photocatalytic activities. Phys Scr. 2022;98:015830 https://iopscience.iop.org/article/10.1088/1402-4896/acaa10.

  31. Singh NK, Koutu V, Malik MM. Enhancement of room temperature ferromagnetic behavior of Co-doped ZnO nanoparticles synthesized via sol–gel technique. J Sol-Gel Sci Technol. 2019;91:324–34. https://doi.org/10.1007/s10971-019-05004-4.

    Article  CAS  Google Scholar 

  32. Djerdj I, Jagličić Z, Arčon D, Niederberger M. Co-doped ZnO nanoparticles: mini review. Nano scale. 2010;2(7):1096–104.

    CAS  Google Scholar 

  33. Godavarti U, Mote VD, Dasari M. Role of cobalt doping on the electrical conductivity of ZnO nanoparticles. J Asian Ceram Soc. 2017;5:391–6. https://doi.org/10.1016/j.jascer.2017.08.002.

    Article  Google Scholar 

  34. Ahmed F, Kumar S, Arshi N, Anwar MSS, Koo BH, Lee CG. Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron Eng. 2012;89:129–32. https://doi.org/10.1016/j.mee.2011.03.149.

    Article  CAS  Google Scholar 

  35. Sangeetha R, Muthukumaran S, Ashokkumar M. Structural, optical, dielectric and antibacterial studies of Mn doped Zn0.96Cu0.04O nanoparticles. Spectrochim Acta Part A Mol Biomol Spectrosc. 2015;144:1–7.

  36. Vegard L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z Physik. 1921;5:17–26. https://doi.org/10.1007/BF01349680.

    Article  CAS  Google Scholar 

  37. Roguai S, Djelloul A. Synthesis and evaluation of the structural, microstructural, optical and magnetic properties of Zn1−xCoxO thin films grown onto glass substrate by ultrasonic spray pyrolysis. Appl Phys A Mater Sci Process. 2019;125:1–11. https://doi.org/10.1007/s00339-019-3118-3.

    Article  CAS  Google Scholar 

  38. Bouloudenine M, Viart N, Colis S, Kortus J, Dinia A, Bouloudenine M, et al. Antiferromagnetism in bulk Zn1 − xCoxO magnetic semiconductors prepared by the coprecipitation technique. Appl Phys Lett. 2005;052501:92–5.

    Google Scholar 

  39. Srinet G, Sharma S, Kumar M, Anshul A. Structural and optical properties of Mg modified ZnO nanoparticles: An x-ray peak broadening analysis. Phys E Low-Dimensional Syst Nanostructures. 2021;125:114381. https://doi.org/10.1016/j.physe.2020.114381.

    Article  CAS  Google Scholar 

  40. Hasan Farooqi MM, Srivastava RK. Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles. J Alloys Compd. 2017;691:275–86. https://doi.org/10.1016/j.jallcom.2016.08.245.

    Article  CAS  Google Scholar 

  41. Vijayaprasath G, Murugan R, Palanisamy S, Prabhu NM, Mahalingam T, Hayakawa Y, et al. Role of nickel doping on structural, optical, magnetic properties and antibacterial activity of ZnO nanoparticles. Mater Res Bull. 2016;76:48–61. https://doi.org/10.1016/j.materresbull.2015.11.053.

    Article  CAS  Google Scholar 

  42. Goswami M. Enhancement of photocatalytic activity of synthesized Cobalt doped Zinc Oxide nanoparticles under visible light irradiation. Opt Mater (Amst). 2020;109:110400. https://doi.org/10.1016/j.optmat.2020.110400.

    Article  CAS  Google Scholar 

  43. Wang W, Hui S, Zhang F, Wang X, Zhang S, Yan J, et al. Fabrication and study on magnetic-optical properties of Ni-Doped ZnO nanorod arrays. Micromachines. 2019;10(9):622.

    Article  CAS  Google Scholar 

  44. Yang J, Li X, Lang J, Yang L, Wei M, Gao M, et al. Synthesis and optical properties of Eu-doped ZnO nanosheets by hydrothermal method. Mater Sci Semicond Process. 2011;14:247–52. https://doi.org/10.1016/j.mssp.2011.04.002.

    Article  CAS  Google Scholar 

  45. Ahmad I, Shoaib Akhtar M, Ahmed E, Ahmad M, Keller V, Qamar Khan W, et al. Rare earth Co-doped ZnO photocatalysts: Solution combustion synthesis and environmental applications. Sep Purif Technol. 2020;237:116328. https://doi.org/10.1016/j.seppur.2019.116328.

    Article  CAS  Google Scholar 

  46. Zelekew OA, Aragaw SG, Sabir FK, Andoshe DM, Duma AD, Kuo DH, et al. Green synthesis of Co-doped ZnO via the accumulation of cobalt ion onto Eichhornia crassipes plant tissue and the photocatalytic degradation efficiency under visible light. Mater Res Express. 2021;8(2): 025010.

    Article  CAS  Google Scholar 

  47. Yang H, Zhang JX, Lin GJ, Xian T, Jiang JL. Preparation, characterization and photocatalytic properties of terbium orthoferrite nanopowder. Adv Powder Technol. 2013;24:242–5. https://doi.org/10.1016/j.apt.2012.06.009.

    Article  CAS  Google Scholar 

  48. Vindhya PS, Jeyasingh T, Kavitha VT. Dielectric properties of zinc oxide nanoparticles using annona muricata leaf. AIP Conf Proc. 2019;2082: 080005.

    Article  Google Scholar 

  49. Madhumitha G, Fowsiya J, Gupta N, Kumar A, Singh M. Green synthesis, characterization and antifungal and photocatalytic activity of Pithecellobium dulce peel–mediated ZnO nanoparticles. J Phys Chem Solids. 2019;127:43–51. https://doi.org/10.1016/j.jpcs.2018.12.005.

    Article  CAS  Google Scholar 

  50. Sinthiya MAM, Kumaresan N, Ramamurthi K, Sethuraman K. Development of pure rutile TiO2 and Magneli titanium sub-oxide microstructures over titanium oxide-seeded glass substrates using surfactant-free hydrothermal process. Bull Mater Sci. 2019;42. https://doi.org/10.1007/s12034-019-1791-7

  51. Ravichandran AT, Karthick R. Enhanced photoluminescence, structural, morphological and antimicrobial efficacy of Co-doped ZnO nanoparticles prepared by Co-precipitation method. Results Mater. 2020;5:100072. https://doi.org/10.1016/j.rinma.2020.100072.

    Article  Google Scholar 

  52. Mahroug A, Hamrit S, Guerbous L. Structural, morphological and optical properties of undoped and Co-doped ZnO thin films prepared by sol – gel process. J Mater Sci: Mater Electron. 2014;25(11):4967–74.

    CAS  Google Scholar 

  53. Yang Z, Ye Z, Zheng X, Zhao B. Effect of the morphology on the optical properties of ZnO nanostructures. Phys E Low-dimensional Syst Nanostructures. 2009;42:116–9. https://doi.org/10.1016/j.physe.2009.09.010.

    Article  CAS  Google Scholar 

  54. Abirami N, Arulanantham AMS, Wilson KSJ. Structural and magnetic properties of cobalt doped ZnO thin films deposited by cost effective nebulizer spray pyrolysis technique. Mater Res Express. 2020;7(2): 026405.

    Article  CAS  Google Scholar 

  55. Yong X, Schoonen MAA. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral. 2000;85:543–56.

    Article  Google Scholar 

  56. Senol SD, Ozugurlu E, Arda L. Synthesis, structure and optical properties of (Mn/Cu) Co-doped ZnO nanoparticles. J Alloys Compd. 2020;822:153514. https://doi.org/10.1016/j.jallcom.2019.153514.

    Article  CAS  Google Scholar 

  57. Vindhya PS, Kavitha VT. Comparative study of antibacterial activity of zinc oxide and copper oxide nanoparticles synthesized by green method. AIP Conference Proceedings 2021; 2369:020195. http://aip.scitation.org/doi/abs/10.1063/5.0060909

  58. Fiedot-Toboła M, Ciesielska M, Maliszewska I, Rac-Rumijowska O, Suchorska-Wo P, Teterycz H, et al. Deposition of zinc oxide on different polymer textiles and their antibacterial properties. Materials. 2018;11(5):707.

    Article  Google Scholar 

  59. Iqbal Y, Raouf Malik A, Iqbal T, Hammad Aziz M, Ahmed F, Abolaban FA, et al. Green synthesis of ZnO and Ag-doped ZnO nanoparticles using Azadirachta indica leaves: Characterization and their potential antibacterial, antidiabetic, and wound-healing activities. Mater Lett. 2021;305:130671. https://doi.org/10.1016/j.matlet.2021.130671.

    Article  CAS  Google Scholar 

  60. Shankar S, Rhim J. Facile approach for large-scale production of metal and metal oxide nanoparticles and preparation of antibacterial cotton pads Running Title : Preparation of antimicrobial cotton pad. Carbohydr Polym. 2017;163:137–45. https://doi.org/10.1016/j.carbpol.2017.01.059.

    Article  CAS  Google Scholar 

  61. Pradeev raj K, Sadaiyandi K, Kennedy A, Sagadevan S, Chowdhury ZZ, Johan MRBin, et al. Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res Lett. 2018;13(1):1–13.

    Article  CAS  Google Scholar 

  62. Hojjati-najafabadi A, Davar F, Enteshari Z. Antibacterial and photocatalytic behaviour of green synthesis of Zn0.95Ag0.05O nanoparticles using herbal medicine extract. Ceram Int. 2021;47(22):31617–24. https://doi.org/10.1016/j.ceramint.2021.08.042.

    Article  CAS  Google Scholar 

  63. Hanif A, Lee I, Akter J, Islam A, Zahid AASM, Sapkota KP, et al. Enhanced photocatalytic and antibacterial performance of ZnO nanoparticles prepared by an efficient thermolysis method. Catalysis. 2019;9(7):608.

    Google Scholar 

  64. Harifi T, Montazer M. Application of nanotech- nology in sports clothing and flooring for enhanced sport activities, performance, efficiency and comfort: a review. J Ind Text. 2017;46(5):1147–69.

    Article  Google Scholar 

  65. Khan SA, Noreen F, Kanwal S, Hussain G. Comparative synthesis, characterization of Cu-doped ZnO nanoparticles and their antioxidant, antibacterial, antifungal and photocatalytic dye degradation activities. Dig J Nanomater Biostructures. 2017;12:877–89.

    Google Scholar 

  66. Ceo G, Naidi SN, Tan AL. Green-synthesized CeO2 nanoparticles for photocatalytic, antimicrobial, antioxidant and cytotoxicity activities. R Soc Chem. 2021;5599–620.

  67. Bharathi D, Bhuvaneshwari V. Synthesis of zinc oxide nanoparticles (ZnO NPs) using pure bioflavonoid rutin and their biomedical applications: antibacterial, antioxidant and cytotoxic activities. Res Chem Intermed. 2019;45:2065–78. https://doi.org/10.1007/s11164-018-03717-9.

    Article  CAS  Google Scholar 

  68. Nandhakumar E, Priya P, Selvakumar P, Vaishnavi E, Sasikumar A, Senthilkumar N. One step hydrothermal green approach of CuO/Ag nanocomposites : analysis of structural, biological activities. Mater Res Express. 2019;6(9): 095036.

    Article  CAS  Google Scholar 

  69. Bhatti MA, Tahira A, Chandio Adad, Almani KF, Bhatti AL, Waryani B, et al. Enzymes and phytochemicals from neem extract robustly tuned the photocatalytic activity of ZnO for the degradation of malachite green (MG) in aqueous media. Res Chem Intermed. 2021;47:1581–99. https://doi.org/10.1007/s11164-020-04391-6.

    Article  CAS  Google Scholar 

  70. Munawar T, Nadeem MS, Mukhtar F, Hasan M, Mahmood K, Arshad MI, et al. Rare earth metal co-doped Zn0·9La0.05M0.05O (M = Yb, Sm, Nd) nanocrystals; energy gap tailoring, structural, photocatalytic and antibacterial studies. Mater Sci Semicond Process. 2021;122:105485.

    Article  CAS  Google Scholar 

  71. Viswanathan B. Photocatalytic degradation of dyes: An overview. Curr Catal. 2017;7:99–121.

    Article  Google Scholar 

  72. Mulmi DDAS, Bhattarai R, Thapa RAMB, Koju R, Nakarmi MIMLAL. Enhanced photocatalytic degradation of organic pollutants by lysozyme-mediated zinc oxide nanoparticles. Bull Mater Sci. 2022;45(2):10. https://doi.org/10.1007/s12034-022-02657-w.

  73. Khataee A, Vahid B, Akbarpour A, Aber S. Effect of dye chemical structure on the efficiency of photoassisted electrochemical degradation using a cathode containing carbon nanotubes and a Ti/RuO2 anode. Res Chem Intermed. 2015;41:6073–85. https://doi.org/10.1007/s11164-014-1723-5.

    Article  CAS  Google Scholar 

  74. Shuga T, Elsayed H, Mohamed A, Maaza M. ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity Journal of Physics and Chemistry of Solids ZnO nanoparticles prepared via a green synthesis approach : Physical properties, photoc. J Phys Chem Solids. 2021;160:110313. https://doi.org/10.1016/j.jpcs.2021.110313.

    Article  CAS  Google Scholar 

  75. El Nemr A, Helmy ET, Gomaa EA, Eldafrawy S, Mousa M. Photocatalytic and biological activities of undoped and doped TiO2 prepared by Green method for water treatment. J Environ Chem Eng. 2019;7:103385. https://doi.org/10.1016/j.jece.2019.103385.

    Article  CAS  Google Scholar 

  76. Ahmad W, Singh V, Ahmed S, Nur-e-Alam M. A comprehensive study on antibacterial antioxidant and photocatalytic activity of achyranthes aspera mediated biosynthesized Fe2O3 nanoparticles. Results Eng. 2022;14:100450. https://doi.org/10.1016/j.rineng.2022.100450.

    Article  CAS  Google Scholar 

  77. Vindhya PS, Kavitha VT. Leaf extract - mediated synthesis of Mn - doped CuO nanoparticles for antimicrobial, antioxidant and photocatalytic applications. Chem Pap. 2022. https://doi.org/10.1007/s11696-022-02631-0.

    Article  Google Scholar 

  78. Yakout SM. Robust ferromagnetism and active visible-near infrared photocatalytic properties: Fe based Mn, Co and Ni codoped CuO nanostructures. Opt Mater (Amst). 2021;112:110769. https://doi.org/10.1016/j.optmat.2020.110769.

    Article  CAS  Google Scholar 

  79. Kannadasan N, Shanmugam N, Cholan S, Sathishkumar K, Viruthagiri G, Poonguzhali R. The effect of Ce4+ incorporation on structural, morphological and photocatalytic characters of ZnO nanoparticles. Mater Charact. 2014;97:37–46. https://doi.org/10.1016/j.matchar.2014.08.021.

    Article  CAS  Google Scholar 

  80. Vasantharaj S, Sathiyavimal S, Senthilkumar P, Kalpana VN, Rajalakshmi G, Alsehli M, et al. Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs). J Environ Chem Eng. 2021;9:105772. https://doi.org/10.1016/j.jece.2021.105772.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vindhya P S like to thank University of Kerala for financial support under university Junior Research Fellowship. Authors thanks CLIF Kerala University, DST-SAIF Cochin for characterization studies and BIOGENIX research centre, Thiruvananthapuram for antimicrobial, antioxidant, and cytotoxicity studies.

Author information

Authors and Affiliations

Authors

Contributions

Vindhya P S, Kavitha V T concept and design of the work. Vindhya P S designed the experiments, synthesized, characterized and their applications were done on the material. Vindhya P S, Sandhya Suresh, Kunjikannan R and Kavitha V T analysed the data. All authors discussed the results of the manuscript and approved the final manuscript.

Corresponding author

Correspondence to V. T. Kavitha.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vindhya, P.S., Suresh, S., Kunjikannan, R. et al. Antimicrobial, antioxidant, cytotoxicity and photocatalytic performance of Co doped ZnO nanoparticles biosynthesized using Annona Muricata leaf extract. J Environ Health Sci Engineer 21, 167–185 (2023). https://doi.org/10.1007/s40201-023-00851-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-023-00851-4

Keywords

Navigation