Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 6, 2023

Trimorphic TaCrP – A diffraction and 31P solid state NMR spectroscopic study

  • Christian Paulsen , Josef Maximilian Gerdes , Volodymyr Svitlyk , Maximilian Kai Reimann , Alfred Rabenbauer , Tom Nilges , Michael Ryan Hansen and Rainer Pöttgen EMAIL logo

Abstract

The metal-rich phosphide TaCrP forms from the elements by step-wise solid state reaction in an alumina crucible (maximum annealing temperature 1180 K). TaCrP is trimorphic. The structural data of the hexagonal ZrNiAl high-temperature phase (space group P 6 2 m ) was deduced from a Rietveld refinement. At room temperature TaCrP crystallizes with the TiNiSi type (Pnma, a = 623.86(5), b = 349.12(3), c = 736.78(6) pm, wR = 0.0419, 401 F2 values, 20 variables) and shows a Peierls type transition below ca. 280 K to the monoclinic low-temperature modification (P121/c1, a = 630.09(3), b = 740.3(4), c = 928.94(4) pm, β = 132.589(5)°, wR = 0.0580, 1378 F2 values, 57 variables). The latter phase transition is driven by pairwise Cr–Cr bond formation out of an equidistant chain in o-TaCrP. The phase transition was monitored via different analytical tools: differential scanning calorimetry, powder synchrotron X-ray diffraction, magnetic susceptibility measurements and 31P solid state NMR spectroscopy.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. J. Kösters for the intensity data collections.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Kuz’ma, Yu., Chykhrij, S. Phosphides. In Handbook on the Physics and Chemistry of Rare Earths; GschneidnerJr.K. A., Eyring, L., Eds. Elsevier Science: Amsterdam, Vol. 23, 1996; pp. 285–433. Chapter 156.10.1016/S0168-1273(96)23007-7Search in Google Scholar

2. Chykhrij, S. I. Pol. J. Chem. 1999, 73, 1595–1611.Search in Google Scholar

3. Pöttgen, R., Hönle, W., von Schnering, H. G. Phosphides: solid state chemistry. In Encyclopedia of Inorganic Chemistry; King, R. B., Ed. 2nd ed.; Wiley: New York, Vol. VII, 2005; pp. 4255–4308.Search in Google Scholar

4. Al-Ali, L. I., Elmutasim, O., Al Ali, K., Singh, N., Polychronopoulou, K. Nanomaterials 2022, 15, 1435; https://doi.org/10.3390/nano12091435.Search in Google Scholar PubMed PubMed Central

5. Lossau, N., Kierspel, H., Langen, J., Schlabitz, W., Wohlleben, D., Mewis, A., Sauer, Ch. Z. Phys. B –Condens. Matter 1989, 74, 227–232; https://doi.org/10.1007/bf01307389.Search in Google Scholar

6. Lux, C., Mewis, A., Lossau, N., Michels, G., Schlabitz, W. Z. Anorg. Allg. Chem. 1991, 593, 169–180; https://doi.org/10.1002/zaac.19915930116.Search in Google Scholar

7. Mitsuda, A., Manabe, S., Umeda, M., Wada, H., Matsubayashi, K., Uwatoko, Y., Mizumaki, M., Kawamura, N., Nitta, K., Hirao, N., Ohishi, Y., Ishimatsu, N. J. Phys.: Condens. Matter 2018, 30, 105603; https://doi.org/10.1088/1361-648x/aaaca3.Search in Google Scholar

8. Ohta, S., Onmayashiki, H. Phys. B 1998, 253, 193–202; https://doi.org/10.1016/s0921-4526(98)00381-0.Search in Google Scholar

9. Kanomata, T., Kawashima, T., Utsugi, H., Goto, T., Hasegawa, H., Kaneko, T. J. Appl. Phys. 1991, 69, 4639–4641; https://doi.org/10.1063/1.348281.Search in Google Scholar

10. Müller, R., Shelton, R. N., Richardson, J. W.Jr., Jacobson, R. A. J. Less- Common Met. 1983, 92, 177–183.10.1016/0022-5088(83)90240-0Search in Google Scholar

11. Meisner, G. P., Ku, H. C. Appl. Phys. A 1983, 31, 201–212; https://doi.org/10.1007/bf00614955.Search in Google Scholar

12. Wong-Ng, W., Ching, W. Y., Xu, Y.-N., Kaduk, J. A., Shirotani, I., Swartzendruber, L. Phys.: Rev. B 2003, 67, 144523; https://doi.org/10.1103/physrevb.67.144523.Search in Google Scholar

13. Kito, H., Iyo, A., Wada, T. J. Phys.: Conf. Ser. 2011, 273, 012115; https://doi.org/10.1088/1742-6596/273/1/012115.Search in Google Scholar

14. Qi, Y., Guo, J., Lei, H., Xiao, Z., Kamiya, T., Hosono, H. Phys. Rev. B 2014, 89, 024517; https://doi.org/10.1103/physrevb.89.024517.Search in Google Scholar

15. Yip, S. Ann. Rev. Condens. Matter Phys. 2014, 5, 15–33; https://doi.org/10.1146/annurev-conmatphys-031113-133912.Search in Google Scholar

16. Smidman, M., Salamon, M. B., Yuan, H. Q., Agterberg, D. F. Rep. Prog. Phys. 2017, 80, 036501; https://doi.org/10.1088/1361-6633/80/3/036501.Search in Google Scholar PubMed

17. Sereika, R., Wu, W., Park, C., Kenney-Benson, C., Brewe, D. L., Heald, S. M., Zhang, J., Yesudhas, S., Deng, H., Chen, B., Luo, J., Ding, Y., Mao, H.-K. Phys. Rev. B 2018, 97, 214103; https://doi.org/10.1103/physrevb.97.214103.Search in Google Scholar

18. Mitsuda, A., Okuma, T., Sato, K., Suga, K., Narumi, Y., Kindo, K., Wada, H. J. Phys.: Condens. Matter 2010, 22, 226003; https://doi.org/10.1088/0953-8984/22/22/226003.Search in Google Scholar PubMed

19. Inami, T., Michimura, S., Mitsuda, A., Wada, H. Phys. Rev. B 2010, 82, 195133; https://doi.org/10.1103/physrevb.82.195133.Search in Google Scholar

20. Kuwata, Y., Kotegawa, H., Tou, H., Harima, H., Ding, Q.-P., Takeda, K., Hayashi, J., Matsuoka, E., Sugawara, H., Sakurai, T., Ohta, H., Furukawa, Y. Phys. Rev. B 2020, 102, 205110; https://doi.org/10.1103/physrevb.102.205110.Search in Google Scholar

21. Paulsen, C., Kösters, J., Seidel, S., Kuwata, Y., Kotegawa, H., Tou, H., Sugawara, H., Harima, H., Pöttgen, R. Z. Kristallogr. 2022, 237, 27–37; https://doi.org/10.1515/zkri-2021-2058.Search in Google Scholar

22. Lomnytska, Y. F., Kuz’ma, Y. B. J. Alloys Compd. 1998, 269, 133–137; https://doi.org/10.1016/s0925-8388(98)00134-0.Search in Google Scholar

23. Lomnytska, Ya., Babizhetskyy, V., Olinyuk, A., Toma, O., Dzevenko, M., Mar, A. J. Solid State Chem. 2016, 235, 50–57; https://doi.org/10.1016/j.jssc.2015.12.010.Search in Google Scholar

24. Pöttgen, R., Gulden, Th., Simon A. GIT Labor-Fachzeits. 1999, 43, 133–136.Search in Google Scholar

25. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Search in Google Scholar

26. Scheinost, A. C., Claussner, J., Exner, J., Feig, M., Findeisen, S., Hennig, C., Kvashnina, K. O., Naudet, D., Prieur, D., Rossberg, A., Schmidt, M., Qiu, C., Colomp, P., Cohen, C., Dettona, E., Dyadkin, V., Stumpf, T. J. Synchrotron Radiat. 2021, 28, 333–349; https://doi.org/10.1107/s1600577520014265.Search in Google Scholar

27. Kieffer, J., Karkoulis, D. J. Phys.: Conf. Ser. 2013, 425, 202012; https://doi.org/10.1088/1742-6596/425/20/202012.Search in Google Scholar

28. Dyadkin, V., Pattison, P., Dmitriev, V., Chernyshov, D. J. Synchrotron Radiat. 2016, 23, 825–829; https://doi.org/10.1107/s1600577516002411.Search in Google Scholar PubMed

29. Rodríguez-Carvajal, J. IUCr Newslett. 2001, 26, 12–19.Search in Google Scholar

30. Protheus Thermal Analysis (Version 5.2.0); Netzsch-Gerätebau GmbH: Selb (Germany), 2010.Search in Google Scholar

31. Meiboom, S., Gill, D. Rev. Sci. Instrum. 1958, 29, 688–691; https://doi.org/10.1063/1.1716296.Search in Google Scholar

32. MacGregor, A. W., O’Dell, L. A., Schurko, R. W. J. Magn. Reson. 2011, 208, 103–113; https://doi.org/10.1016/j.jmr.2010.10.011.Search in Google Scholar PubMed

33. Ralford, D. S., Fisk, C. L., Becker, E. D. Anal. Chem. 1979, 51, 2050–2051.10.1021/ac50048a040Search in Google Scholar

34. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

35. Finger, L. W., Cox, D. E., Jephcoat, A. P. J. Appl. Crystallogr. 1994, 27, 892–900; https://doi.org/10.1107/s0021889894004218.Search in Google Scholar

36. Cromer, D. T., Liberman, D. A. Acta Crystallogr. A 1981, A37, 267–268; https://doi.org/10.1107/s0567739481000600.Search in Google Scholar

37. Bérar, J.-F., Lelann, P. J. Appl. Crystallogr. 1991, 24, 1–5.10.1107/S0021889890008391Search in Google Scholar

38. Shoemaker, C. B., Shoemaker, D. P. Acta Crystallogr. 1965, 18, 900–905; https://doi.org/10.1107/s0365110x65002189.Search in Google Scholar

39. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Search in Google Scholar

40. Hoffmann, R.-D., Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145; https://doi.org/10.1524/zkri.216.3.127.20327.Search in Google Scholar

41. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar

42. Landrum, G. A., Hoffmann, R., Evers, J., Boysen, H. Inorg. Chem. 1998, 37, 5754–5763; https://doi.org/10.1021/ic980223e.Search in Google Scholar

43. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-02909-1Search in Google Scholar

44. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1653–1682; https://doi.org/10.1002/hlca.200390140.Search in Google Scholar

45. Bojin, M. D., Hoffmann, R. Helv. Chim. Acta 2003, 86, 1683–1708; https://doi.org/10.1002/hlca.200390141.Search in Google Scholar

46. Janka, O., Niehaus, O., Pöttgen, R., Chevalier, B. Z. Naturforsch. 2016, 71b, 737–764; https://doi.org/10.1515/znb-2016-0101.Search in Google Scholar

47. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

48. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Search in Google Scholar

49. Müller, U. International Tables for Crystallography, Vol. A1, Symmetry Relations between Space Groups; John Wiley & Sons: Chichester, United Kingdom, 2010.Search in Google Scholar

50. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen; Vieweg + Teubner Verlag: Wiesbaden, Germany, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar

51. Peierls, R. E. Quantum Theory of Solids; Clarendon Press: Oxford, 1955.Search in Google Scholar

52. Hoffmann, R. Solids and Surfaces: A Chemist’s View of Bonding in Extended Structures; VCH Publishers: Weinheim, 1988.10.21236/ADA196638Search in Google Scholar

53. Burdett, J. K. Chemical Bonding in Solids; Oxford University Press: Oxford, 1995.Search in Google Scholar

54. Whangbo, M.-H. J. Chem. Phys. 1981, 75, 4983–4996; https://doi.org/10.1063/1.441887.Search in Google Scholar

55. Burdett, J. K., Lee, S. J. Am. Chem. Soc. 1983, 105, 1079–1083; https://doi.org/10.1021/ja00343a001.Search in Google Scholar

56. Meyer, H.-J. Festkörperchemie. In Moderne Anorganische Chemie, 5th ed.; Janiak, C., Meyer, H.-J., Gudat, D., Kurz, P., Riedel, E., Eds.; De Gruyter: Berlin, 2018. Chapter 2.10.1515/9783110441635-002Search in Google Scholar

57. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Search in Google Scholar

58. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

59. Krypyakevich, P. I., Markiv, V. Ya., Melnyk, E. V. Dopov. Akad. Nauk. Ukr. RSR, Ser. A 1967, 750–753.Search in Google Scholar

60. Dwight, A. E., Mueller, M. H., Conner, R. A.Jr., Downey, J. W., Knott, H. Trans. Met. Soc. AIME 1968, 242, 2075–2080.Search in Google Scholar

61. Zumdick, M. F., Hoffmann, R.-D., Pöttgen, R. Z. Naturforsch. 1999, 54b, 45–53; https://doi.org/10.1515/znb-1999-0111.Search in Google Scholar

62. Gupta, S., Suresh, K. G. J. Alloys Compd. 2015, 618, 562–606; https://doi.org/10.1016/j.jallcom.2014.08.079.Search in Google Scholar

63. Pöttgen, R., Chevalier, B. Z. Naturforsch. 2015, 70b, 289–304.10.1515/znb-2015-0018Search in Google Scholar

64. Kußmann, D., Pöttgen, R., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D. Z. Kristallogr. 1998, 213, 356–363.10.1524/zkri.1998.213.6.356Search in Google Scholar

65. Touzani, R. St., Mbarki, M., Chen, X., Fokwa, B. P. T. Eur. J. Inorg. Chem. 2016, 4104–4110.10.1002/ejic.201600689Search in Google Scholar

66. Gulay, N. L., Kösters, J., Kalychak, Ya. M., Matar, S. F., Rabenbauer, A., Nilges, T., Pöttgen, R. Z. Kristallogr. 2022, 237, 239–248; https://doi.org/10.1515/zkri-2022-0020.Search in Google Scholar

67. Vogt, C., Hoffmann, R.-D., Rodewald, U. Ch., Eickerling, G., Presnitz, M., Eyert, V., Scherer, W., Pöttgen, R. Inorg. Chem. 2009, 48, 6436–6451; https://doi.org/10.1021/ic9002143.Search in Google Scholar PubMed

68. Clogston, A., Jaccarino, V. Phys. Rev. B 1961, 121, 1357–1362; https://doi.org/10.1103/physrev.121.1357.Search in Google Scholar

69. Clogston, A., Jaccarino, V., Yafet, Y. Phys. Rev. B 1964, 134, A650–A661; https://doi.org/10.1103/physrev.134.a650.Search in Google Scholar

70. Slichter, C. P. Principles of Magnetic Resonance, 3rd ed.; Springer: Berlin, 1996.Search in Google Scholar

71. Pell, A., Pintacuda, G., Grey, C. Prog. Nucl. Magn. Reson. Spectrosc. 2019, 111, 1–271; https://doi.org/10.1016/j.pnmrs.2018.05.001.Search in Google Scholar PubMed

72. Korringa, J. Physica 1950, 16, 601–610; https://doi.org/10.1016/0031-8914(50)90105-4.Search in Google Scholar

73. Moriya, T. J. Phys. Soc. Jpn. 1963, 18, 516–520; https://doi.org/10.1143/jpsj.18.516.Search in Google Scholar

74. Barz, H., Ku, H. C., Meisner, G. P., Fisk, Z., Matthias, B. Proc. Natl. Acad. Sci. USA 1980, 77, 3132–3134; https://doi.org/10.1073/pnas.77.6.3132.Search in Google Scholar PubMed PubMed Central

Received: 2022-12-21
Accepted: 2023-01-26
Published Online: 2023-02-06
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0070/html
Scroll to top button