Skip to main content

Advertisement

Log in

Characterization and antioxidant activities of glycosaminoglycans from dried leech

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Dried leech (Whitmania pigra whitman) has been widely used as a traditional animal-based Chinese medicine. Dried leech extracts have been reported to have various biological activities that are often associated with mammalian glycosaminoglycans. However, their presence and possible structural characteristics within dried leech were previously unknown. In this study, glycosaminoglycans were isolated from dried leech for the first time and their structures were analyzed by the combination of Fourier-transform infrared spectroscopy, liquid chromatography-ion trap/time-of-flight mass spectrometry and polyacrylamide gel electrophoresis. Heparan sulfate and chondroitin sulfate/dermatan sulfate were detected in dried leech with varied disaccharide compositions and possess a heterogeneous structure. Heparan sulfate species possess an equal amount of total 2-O-sulfated, N-sulfated and acetylated disaccharides, while chondroitin sulfate /dermatan sulfate contain high content of 4-O-sulfated disaccharides. Also, the quantitative analysis revealed that the contents of heparan sulfate and chondroitin/dermatan sulfate in dried leech varied significantly, with chondroitin/dermatan sulfate being by far the most abundant. This novel structural information could help clarify the possible involvement of these polysaccharides in the biological activities of the dried leech. Furthermore, leech glycosaminoglycans showed a strong ABTS radical scavenging ability, which suggests the potential of leech polysaccharides for exploitation in the nutraceutical and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABST:

2,2’-azinobis-(3-ethylbenzthiazoline-6-sulphonate

AMAC:

2-aminoacridone

CS:

chondroitin sulfate

DS:

dermatan sulfate

EIC:

extracted ion chromatogram

FTIR:

fourier-transform infrared

GAG:

glycosaminoglycan

GalNAc:

N-acetylgalatosamine

GlcA:

glucuronate

GlcNAc:

N-acetylglucosmine

GlcNS:

N-sulfated glucosamine

HA:

hyaluronic acid

HP:

heparin

HS:

heparan sulfate

IdoA:

iduronate

KS:

keratan sulphate

LC-MS-ITTOF:

liquid chromatography-ion trap/time-of-flight mass spectrometry

NaCl:

sodium chloride

ΔUA:

4,5-unsaturated uronate (generated by heparinases and chondroitinase excision)

PAGE:

polyacrylamide gel electrophoresis

SE-HPLC:

size-exclusion HPLC

References

  1. Wang, X., Niu, M., Wu, S.N., Hu, H.W., Liu, X.Y., Ma, S.Y., Liu, J., Hao, J.J., Yang, X.J., Wu, G.S., Qin, N., Wen, R.Q., Li, D.H., Zhang, Y.M., Xiao, X.H., Wang, J.B., Ma, L.: Leeches attenuate blood hyperviscosity and related metabolic disorders in rats differently than aspirin. J. Ethnopharmacol. 238, 111813 (2019). https://doi.org/10.1016/j.jep.2019.03.040

    Article  CAS  PubMed  Google Scholar 

  2. Jiang, Q., Wang, L.N., Hu, J.H., Zhang, Y.Q.: Oral administration of leeches (Shuizhi): a review of the mechanisms of action on antiplatelet aggregation. J. Ethnopharmacol. 232, 103–109 (2019). https://doi.org/10.1016/j.jep.2018.12.010

    Article  Google Scholar 

  3. Liang, J.Q., Wang, N.S., Fu, S.Q.: The effects of anticoagulation and anti-thrombosis of hirudo and the relationship between the activity and origin species as well as extract method. Chin. J. Integr. Med. Cardio-Cerebro Vascular Disease. 7, 1096–1098 (2009)

    Google Scholar 

  4. Ou, X.C., Zhang, Q.H., Ding, J.X., Liu, Z.L., Zhang, L., Yang, T.: Studies of the anticoagulant activity of 4 kinds of leeches. Nat. Prod. Res. Dev. 8, 54–56 (1996)

    Google Scholar 

  5. Wang, Y., Zhao, X., Wang, Y.S., Song, S.L., Liang, H., Ji, A.G.: An extract from medical leech improve the function of endothelial cells in vitro and attenuates atherosclerosis in ApoE null mice by reducing macrophages in the lesions. Biochem. Biophys. Res. Commun. 455(1–2), 119–125 (2014). https://doi.org/10.1016/j.bbrc.2014.10.135

    Article  CAS  PubMed  Google Scholar 

  6. Chen, W.Q., Zhong, L., Zhang, L., Ji, X.P., Zhao, Y.X., Zhang, C., Jiang, H., Wu, Y.L., Zhang, Y.: Chinese medicine tongxinluo significantly lowers serum lipid levels and stabilizes vulnerable plaques in a rabbit model. J. Ethnopharmacol. 124(1), 103–110 (2009). https://doi.org/10.1016/j.jep.2009.04.009

    Article  PubMed  Google Scholar 

  7. Zhang, Y.H., Liu, J.T., Wen, B.Y., Liu, N.: Mechanisms of inhibiting proliferation of vascular smooth muscle cells by serum of rats treated with Dahuang Zhechong pill. J. Ethnopharmacol. 124(1), 125–129 (2009). https://doi.org/10.1016/j.jep.2009.04.012

    Article  PubMed  Google Scholar 

  8. Chen, L., Zhao, Y., Zhang, T., Dang, X., Xie, R.M., Li, Z.Z., Li, Y., Li, Y.L., Zhao, W.N., Song, H.R.: Protective effect of Sheng-Nao-Kang decoction on focal cerebral ischemia-reperfusion injury in rats. J. Ethnopharmacol. 151(1), 228–236 (2014). https://doi.org/10.1016/j.jep.2013.10.015

    Article  PubMed  Google Scholar 

  9. Ren, J.X., Zhou, X.Y., Wang, J., Zhao, J.J., Zhang, P.G.: Poxue Huayu and Tianjing Busui Decoction for cerebral hemorrhage (Upregulation of neurotrophic factor expression): Upregulation of neurotrophic factor expression. Neural Regen Res 8(22), 2039–2049 (2013). https://doi.org/10.3969/j.issn.1673-5374.2013.22.003

  10. Li, X.J., Lu, H.D., Chen, W.Q., Lei, Z., Hu, Y., Kong, Q.Z.: Effects of Leech Hirudo on Tumor Angiogenesis and its mechanisms. Cancer Res. Prev. Treat. 40, 46–50 (2013)

    Google Scholar 

  11. Huang, Y.N., Zhang, Y.L., Zhao, B., Xu, Q.P., Zhou, X.S., Song, H.Y., Yu, M., Mo, W.: Structural basis of RGD-hirudin binding to thrombin: Tyr3 and five C-terminal residues are crucial for inhibiting thrombin activity. BMC Struct. Biol. 14, 26 (2014). https://doi.org/10.1186/s12900-014-0026-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li, T., Wang, G.C., Wang, C.H., Ye, W.C.: Three New Pteridines from the Leech Whitmania pigra. Chem. Lett. 42(9), 983–985 (2013). https://doi.org/10.1246/cl.130349

    Article  CAS  Google Scholar 

  13. Noda, N., Tanaka, R., Miyahara, K., Sukamoto, T.: Six Trigalactosylceramides from the Leech (Hirudo nipponica). Chem. Pharm. Bull. 44, 895–899 (1996)

    Article  CAS  Google Scholar 

  14. Esko, J.D., Lindahl, U.: Molecular diversity of heparan sulfate. J. Clin. Invest. 108(2), 169–173 (2001). https://doi.org/10.1172/JCI13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Esko, J.D., Selleck, S.B.: Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002). https://doi.org/10.1146/annurev.biochem.71.110601.135458

    Article  CAS  PubMed  Google Scholar 

  16. Bülow, H.E., Hobert, O.: The molecular diversity of glycosaminoglycans shapes animal development. Annu. Rev. Cell. Dev. Biol. 22, 375–407 (2006). https://doi.org/10.1146/annurev.cellbio.22.010605.093433

    Article  CAS  PubMed  Google Scholar 

  17. Whistler, R.L., Olson, E.J.: The Biosynthesis of Hyaluronic Acid. In. Advances in Carbohydrate Chemistry, pp. 299–319. (1957)

  18. Iozzo, R.V.: Basement membrane proteoglycans: from cellar to ceiling. Nat. Rev. Mol. Cell. Biol. 6(8), 646–656 (2005). https://doi.org/10.1038/nrm1702

    Article  CAS  PubMed  Google Scholar 

  19. Couchman, J.R.: Transmembrane signaling proteoglycans. Annu. Rev. Cell. Dev. Biol. 26, 89–114 (2010). https://doi.org/10.1146/annurev-cellbio-100109-104126

    Article  CAS  PubMed  Google Scholar 

  20. Iozzo, R.V., Sanderson, R.D.: Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J. Cell. Mol. Med. 15(5), 1013–1031 (2011). https://doi.org/10.1111/j.1582-4934.2010.01236.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhou, C., Mi, S., Li, J., Gao, J., Wang, X.H., Sang, Y.X.: Purification, characterisation and antioxidant activities of chondroitin sulphate extracted from Raja porosa cartilage. Carbohydr. Polym. 241, 116306 (2020). https://doi.org/10.1016/j.carbpol.2020.116306

    Article  CAS  PubMed  Google Scholar 

  22. Lan, R., Li, Y., Shen, R., Yu, R., Jing, L.H., Guo, S.S.: Preparation of low-molecular-weight chondroitin sulfates by complex enzyme hydrolysis and their antioxidant activities. Carbohydr. Polym. 241, 116302 (2020). https://doi.org/10.1016/j.carbpol.2020.116302

    Article  CAS  PubMed  Google Scholar 

  23. Huang, H., Mao, J., Liang, Q.T., Lin, J.H., Jiang, L.L., Liu, S.T., Sharp, J.S., Wei, Z.: Structural analysis of glycosaminoglycans from Oviductus ranae. Glycoconj. J. 38(1), 25–33 (2021). https://doi.org/10.1007/s10719-020-09962-8

    Article  CAS  PubMed  Google Scholar 

  24. Du, J.Y., Liu, S., Liang, Q.T., Lin, J.H., Jiang, L.L., Chen, F.E., Wei, Z.: Analysis of Heparan sulfate/heparin from Colla corii asini by liquid chromatography-electrospray ion trap mass spectrometry. Glycoconj. J. 36(3), 211–218 (2019). https://doi.org/10.1007/s10719-019-09868-0

    Article  CAS  PubMed  Google Scholar 

  25. Huang, H.Y., Liu, S., Du, J.Y., Lin, J.H., Liang, Q.T., Liu, S., Wei, Z.: Structural analysis of glycosaminoglycans from Colla corii asini by liquid chromatography-electrospray ion trap mass spectrometry. Glycoconj. J. 37(2), 201–207 (2020). https://doi.org/10.1007/s10719-019-09904-z

    Article  CAS  PubMed  Google Scholar 

  26. Liang, Q.T., Xiao, X.M., Lin, J.H., Wei, Z.: A new sequencing approach for N-unsubstituted heparin/heparan sulfate oligosaccharides. Glycobiology. 25(7), 714–725 (2015). https://doi.org/10.1093/glycob/cwv011

    Article  CAS  PubMed  Google Scholar 

  27. Du, J.Y., Chen, L.R., Liu, S., Lin, J.H., Liang, Q.T., Lyon, M., Wei, Z.: Ion-pairing liquid chromatography with on-line electrospray ion trap mass spectrometry for the structural analysis of N-unsubstituted heparin/heparan sulfate. J. Chromatogr. B Analyt Technol. Biomed. Life Sci. 1028, 71–76 (2016). https://doi.org/10.1016/j.jchromb.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  28. Yang, B., Chang, Y.Q., Weyers, A.M., Sterner, E., Linhardt, R.J.: Disaccharide analysis of glycosaminoglycan mixtures by ultra-high-performance liquid chromatography-mass spectrometry. J. Chromatogr. A. 1225, 91–98 (2012). https://doi.org/10.1016/j.chroma.2011.12.063

    Article  CAS  PubMed  Google Scholar 

  29. Lv, M.X., Wang, M., Cai, W.W., Hao, W.X., Yuan, P.H., Kang, Z.: Characterisation of separated end hyaluronan oligosaccharides from leech hyaluronidase and evaluation of angiogenesis. Carbohydr. Polym. 142, 309–316 (2016). https://doi.org/10.1016/j.carbpol.2016.01.052

    Article  CAS  PubMed  Google Scholar 

  30. Hoffman, P., Meyer, K., Linker, A.: Transglycosylation during the mixed digestion of Hyaluronic Acid and Chondroitin Sulfate by Testicular Hyaluronidase. J. Biol. Chem. 219(2), 653–663 (1956). https://doi.org/10.1016/s0021-9258(18)65724-2

    Article  CAS  PubMed  Google Scholar 

  31. Linker, A., Meyer, K., Hoffman, P.: The production of Hyaluronate Oligosaccharides by Leech Hyaluronidase and Alkali. J. Biol. Chem. 235(4), 924–927 (1960). https://doi.org/10.1016/s0021-9258(18)69452-9

    Article  CAS  PubMed  Google Scholar 

  32. Gulcin, I.: Antioxidants and antioxidant methods: an updated overview. Arch. Toxicol. 94(3), 651–715 (2020). https://doi.org/10.1007/s00204-020-02689-3

    Article  CAS  PubMed  Google Scholar 

  33. Bai, M., Han, W., Zhao, X., Wang, Q., Gao, Y., Deng, S.: Glycosaminoglycans from a Sea Snake (Lapemis curtus): extraction, structural characterization and antioxidant activity. Mar. Drugs. 16(5), 170–183 (2018). https://doi.org/10.3390/md16050170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zou, Z.H., Wei, M., Fang, J., Dai, W., Sun, T.T., Liu, Q., Gong, G.P., Liu, Y.X., Song, S., Ma, F.L., Wang, L.H., Huang, L.J., Wang, Z.F.: Preparation of chondroitin sulfates with different molecular weights from bovine nasal cartilage and their antioxidant activities. Int. J. Biol. Macromol. 152, 1047–1055 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.192

    Article  CAS  PubMed  Google Scholar 

  35. Pecchi, E., Priam, S., Mladenovic, Z., Gosset, M., Saurel, A.S., Aguilar, L., Berenbaum, F., Jacques, C.: A potential role of chondroitin sulfate on bone in osteoarthritis: inhibition of prostaglandin E(2) and matrix metalloproteinases synthesis in interleukin-1beta-stimulated osteoblasts. Osteoarthr. Cartil. 20(2), 127–135 (2012). https://doi.org/10.1016/j.joca.2011.12.002

    Article  CAS  Google Scholar 

  36. Zhang, Q., Li, J., Liu, C., Song, C., Li, P., Yin, F., Xiao, Y., Li, J., Jiang, W., Zong, A., Zhang, X., Wang, F.: Protective effects of low molecular weight chondroitin sulfate on amyloid beta (Aβ)-induced damage in vitro and in vivo. Neuroscience. 305, 169–182 (2015). https://doi.org/10.1016/j.neuroscience.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  37. Egea, J., García, A.G., Verges, J., Montell, E., López, M.G.: Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthr. Cartil. 18(Suppl 1), 24–27 (2010). https://doi.org/10.1016/j.joca.2010.01.016

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fuzhou University scientific research Grant (number 510866), and Education Department of Fujian Province Grant (number JAT200021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Quntao Liang or Zheng Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, T., Wang, S., Liang, Q. et al. Characterization and antioxidant activities of glycosaminoglycans from dried leech. Glycoconj J 40, 169–178 (2023). https://doi.org/10.1007/s10719-023-10105-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10105-y

Keywords

Navigation