Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

An Insight into Emerging Begomoviruses and their Satellite Complex causing Papaya Leaf Curl Disease

Author(s): Aarshi Srivastava, Vineeta Pandey, Abdullah. M. Al-Sadi, Muhammad S. Shahid* and R.K. Gaur*

Volume 24, Issue 1, 2023

Published on: 15 February, 2023

Page: [2 - 17] Pages: 16

DOI: 10.2174/1389202924666230207111530

Price: $65

Abstract

Papaya leaf curl disease (PaLCD) was primarily detected in India and causes major economic damage to agriculture crops grown globally, seriously threatening food security. Begomoviruses are communicated by the vector Bemisia tabaci, and their transmission efficiency and persistence in the vector are the highest, exhibiting the widest host range due to adaptation and evolution. Symptoms induced during PaLCD include leaf curl, leaf yellowing, interveinal chlorosis, and reduced fruit quality and yield. Consequently, plants have evolved several multi-layered defense mechanisms to resist Begomovirus infection and distribution. Subsequently, Begomovirus genomes organise circular ssDNA of size ~2.5–2.7 kb of overlapping viral transcripts and carry six–seven ORFs encoding multifunctional proteins, which are precisely evolved by the viruses to maintain the genome-constraint and develop complex but integrated interactions with a variety of host components to expand and facilitate successful infection cycles, i.e., suppression of host defense strategies. Geographical distribution is continuing to increase due to the advent and evolution of new Begomoviruses, and sweep to new regions is a future scenario. This review summarizes the current information on the biological functions of papaya-infecting Begomoviruses and their encoded proteins in transmission through vectors and modulating host-mediated responses, which may improve our understanding of how to challenge these significant plant viruses by revealing new information on the development of antiviral approaches against Begomoviruses associated with PaLCD.

Keywords: Papaya leaf curl disease, begomovirus, evolution, diversity, management, Bemisia tabaci.

Graphical Abstract
[1]
Aravind, G.; Bhowmik, D.; Duraivel, S.; Harish, G. Traditional and medicinal uses of Carica papaya. J. Med. Plants. Stud., 2013, 12, 7-15.
[2]
Rodríguez-Negrete, E.; Lozano-Durán, R.; Piedra-Aguilera, A.; Cruzado, L.; Bejarano, E.R.; Castillo, A.G. Geminivirus R ep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene silencing. New Phytol., 2013, 199(2), 464-475.
[http://dx.doi.org/10.1111/nph.12286] [PMID: 23614786]
[3]
Sharma, N.; Mishra, K.P.; Chanda, S.; Bhardwaj, V.; Tanwar, H.; Ganju, L.; Kumar, B.; Singh, S.B. Evaluation of anti-dengue activity of Carica papaya aqueous leaf extract and its role in platelet augmentation. Arch. Virol., 2019, 164(4), 1095-1110.
[http://dx.doi.org/10.1007/s00705-019-04179-z] [PMID: 30790105]
[4]
Saxena, S.; Hallan, V.; Singh, B.P.; Sane, P.V. Nucleotide sequence and intergeminiviral homologies of the DNA-A of papaya leaf curl geminivirus from India. IUBMB Life, 1998, 45(1), 101-113.
[http://dx.doi.org/10.1080/15216549800202472] [PMID: 9635134]
[5]
Hamim, I.; Borth, W.B.; Marquez, J.; Green, J.C.; Melzer, M.J.; Hu, J.S. Transgene-mediated resistance to Papaya ringspot virus: challenges and solutions. Phytoparasitica, 2018, 46(1), 1-18.
[http://dx.doi.org/10.1007/s12600-017-0636-4]
[6]
Srivastava, A.; Pandey, V.; Sahu, A.K.; Yadav, D.; Al-Sadi, A.M.; Shahid, M.S.; Gaur, R.K. Evolutionary dynamics of begomoviruses and its satellites infecting papaya in India. Front. Microbiol., 2022, 13, 879413.
[http://dx.doi.org/10.3389/fmicb.2022.879413] [PMID: 35685936]
[7]
Ying, J.I.N.G.; Jian, H.U.A.N.G.; Rui-yan, M.A.; Ju-cai, H.A.N. Host plant preferences of Bemisia tabaci Gennadius. Insect Sci., 2003, 10(2), 109-114.
[http://dx.doi.org/10.1111/j.1744-7917.2003.tb00372.x]
[8]
Fiallo-Olivé, E.; Lett, J.M.; Martin, D.P.; Roumagnac, P.; Varsani, A.; Zerbini, F.M.; Navas-Castillo, J. ICTV virus taxonomy profile: Geminiviridae 2021. J. Gen. Virol., 2021, 102(12), 001696.
[http://dx.doi.org/10.1099/jgv.0.001696] [PMID: 34919512]
[9]
Nabity, P.D.; Zavala, J.A.; DeLucia, E.H. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann. Bot. (Lond.), 2009, 103(4), 655-663.
[http://dx.doi.org/10.1093/aob/mcn127] [PMID: 18660492]
[10]
Thangavel, B.; Palaniappan, K.; Manickavasagam, P.K.; Subbarayalu, M.; Madhaiyan, R.; Soibam, B.S. Microbial control of the exotic spiralling whitefly, Aleurodicus dispersus (Hemiptera: Aleyrodidae) on eggplant using entomopathogenic fungi. Afr. J. Microbiol. Res., 2015, 9(1), 39-46.
[http://dx.doi.org/10.5897/AJMR2014.7032]
[11]
Farina, A.; Barbera, A.C.; Leonardi, G.; Massimino Cocuzza, G.E.; Suma, P.; Rapisarda, C. Bemisia tabaci (Hemiptera: Aleyrodidae): What relationships with and morpho-physiological effects on the plants it develops on? Insects, 2022, 13(4), 351.
[http://dx.doi.org/10.3390/insects13040351] [PMID: 35447793]
[12]
Nascimento, A.K.Q.; Lima, J.A.A.; Nascimento, A.L.L.; Beserra, E.A., Jr; Purcifull, D.E. Biological, physical, and molecular properties of a Papaya lethal yellowing virus isolate. Plant Dis., 2010, 94(10), 1206-1212.
[http://dx.doi.org/10.1094/PDIS-11-09-0733] [PMID: 30743613]
[13]
Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol., 2015, 2(1), 67-93.
[http://dx.doi.org/10.1146/annurev-virology-031413-085410] [PMID: 26958907]
[14]
Kollenberg, M.; Winter, S.; Götz, M. Quantification and localization of Watermelon chlorotic stunt virus and Tomato yellow leaf curl virus (Geminiviridae) in populations of Bemisia tabaci (Hemiptera, Aleyrodidae) with differential virus transmission characteristics. PLoS One, 2014, 9(11), e111968.
[http://dx.doi.org/10.1371/journal.pone.0111968] [PMID: 25365330]
[15]
Ghanim, M. A review of the mechanisms and components that determine the transmission efficiency of Tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res., 2014, 186, 47-54.
[16]
Barboza, N.; Herna’ndez, E.; Inoue-Nagata, A.K.; Moriones, E.; Hilje, L. Achievements in the epidemiology of begomoviruses and their vector Bemisia tabaci in Costa Rica. Rev. Biol. Trop., 2019, 67(3), 419-453.
[http://dx.doi.org/10.15517/rbt.v67i3.33457]
[17]
Pandey, V.; Srivastava, A.; Mishra, M.; Gaur, R.K. Chilli leaf curl disease populations in India are highly recombinant, and rapidly segregated. 3 Biotech, 2022, 12(3), 83.
[http://dx.doi.org/10.1007/s13205-022-03139-w]
[18]
Ning, W.; Shi, X.; Liu, B.; Pan, H.; Wei, W.; Zeng, Y.; Sun, X.; Xie, W.; Wang, S.; Wu, Q.; Cheng, J.; Peng, Z.; Zhang, Y. Transmission of Tomato yellow leaf curl virus by Bemisia tabaci as affected by whitefly sex and biotype. Sci. Rep., 2015, 5(1), 10744.
[http://dx.doi.org/10.1038/srep10744] [PMID: 26021483]
[19]
Ghanim, M.; Czosnek, H. Interactions between the whitefly Bemisia tabaci and begomoviruses: Biological and genomic perspectives. In: Management of Insect Pests to Agriculture: Lessons Learned from Deciphering Their Genome, Transcriptome and Proteome; Czosnek, H.; Ghanim, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 181-200.
[http://dx.doi.org/10.1007/978-3-319-24049-7_7]
[20]
Pan, H.; Chu, D.; Yan, W.; Su, Q.; Liu, B.; Wang, S.; Wu, Q.; Xie, W.; Jiao, X.; Li, R.; Yang, N.; Yang, X.; Xu, B.; Brown, J.K.; Zhou, X.; Zhang, Y. Rapid spread of tomato yellow leaf curl virus in China is aided differentially by two invasive whiteflies. PLoS One, 2012, 7(4), e34817.
[http://dx.doi.org/10.1371/journal.pone.0034817] [PMID: 22514670]
[21]
Czosnek, H.; Ghanim, M.; Ghanim, M. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci - insights from studies with Tomato yellow leaf curl virus. Ann. Appl. Biol., 2002, 140(3), 215-231.
[http://dx.doi.org/10.1111/j.1744-7348.2002.tb00175.x]
[22]
Czosnek, H.; Hariton-Shalev, A.; Sobol, I.; Gorovits, R.; Ghanim, M. The incredible journey of begomoviruses in their whitefly vector. Viruses, 2017, 9(10), 273.
[http://dx.doi.org/10.3390/v9100273] [PMID: 28946649]
[23]
Aregbesola, O.Z.; Legg, J.P.; Sigsgaard, L.; Lund, O.S.; Rapisarda, C. Potential impact of climate change on whiteflies and implications for the spread of vectored viruses. J. Pest Sci., 2019, 92(2), 381-392.
[http://dx.doi.org/10.1007/s10340-018-1059-9]
[24]
Zaidi, S.S.E.A.; Martin, D.P.; Amin, I.; Farooq, M.; Mansoor, S. Tomato leaf curl New Delhi virus: a widespread bipartite begomovirus in the territory of monopartite begomoviruses. Mol. Plant Pathol., 2017, 18(7), 901-911.
[http://dx.doi.org/10.1111/mpp.12481] [PMID: 27553982]
[25]
Yazdani-Khameneh, S.; Aboutorabi, S.; Shoori, M.; Aghazadeh, A.; Jahanshahi, P.; Golnaraghi, A.; Maleki, M. Natural occurrence of tomato leaf curl New Delhi virus in iranian cucurbit crops. Plant Pathol. J., 2016, 32(3), 201-208.
[http://dx.doi.org/10.5423/PPJ.OA.10.2015.0210] [PMID: 27298595]
[26]
Sivalingam, P.N.; Sumiya, K.V.; Malathi, V.G. Carrot as a new host for a begomovirus: yellow mosaic disease of carrot reported in India. New Dis. Rep., 2011, 23(1), 34.
[http://dx.doi.org/10.5197/j.2044-0588.2011.023.034]
[27]
Srivastava, A.; Pandey, V.; Verma, R.K.; Marwal, A.; Mishra, R.; Briddon, R.W.; Akhtar, A.; Gaur, R.K. First complete genome sequence of Tomato leaf curl virus (ToLCV) from Salvia splendens in India. J. Phytopathol., 2022, 170(7-8), 479-491.
[http://dx.doi.org/10.1111/jph.13099]
[28]
Pratap, D.; Kashikar, A.R.; Mukherjee, S.K. Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virol. J., 2011, 8(1), 305.
[http://dx.doi.org/10.1186/1743-422X-8-305] [PMID: 21676270]
[29]
Sivalingam, P.N.; Varma, A. Role of betasatellite in the pathogenesis of a bipartite begomovirus affecting tomato in India. Arch. Virol., 2012, 157(6), 1081-1092.
[http://dx.doi.org/10.1007/s00705-012-1261-7] [PMID: 22418785]
[30]
Brown, J.K.; Fauquet, C.M.; Briddon, R.W.; Zerbini, M. Family Geminiviridae. In: Virus Taxonomy: Classification and Nomenclature of Viruses - Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q.; Adams, M.J.; Carstens, E.B.; Lefkowitz, E.J., Eds.; Elsevier Academic Press: USA, 2012; pp. 351-373.
[31]
Lozano, G.; Trenado, H.P.; Fiallo-Olivé, E.; Chirinos, D.; Geraud-Pouey, F.; Briddon, R.W.; Navas-Castillo, J. Characterization of non – coding DNA satellites associated with sweepoviruses (genus Begomovirus, Geminiviridae) – definition of a distinct class of begomovirus – associated satellite. Front. Microbiol., 2016, 7, 162.
[http://dx.doi.org/10.3389/fmicb.2016.00162] [PMID: 26925037]
[32]
Ali, A.; Shah, L.; Rahman, S.; Riaz, M.W.; Yahya, M.; Xu, Y.J.; Liu, F.; Si, W.; Jiang, H.; Cheng, B. Plant defense mechanism and current understanding of salicylic acid and NPRs in activating SAR. Physiol. Mol. Plant Pathol., 2018, 104, 15-22.
[http://dx.doi.org/10.1016/j.pmpp.2018.08.001]
[33]
Cui, H.; Tsuda, K.; Parker, J.E. Effector-triggered immunity: from pathogen perception to robust defense. Annu. Rev. Plant Biol., 2015, 66(1), 487-511.
[http://dx.doi.org/10.1146/annurev-arplant-050213-040012] [PMID: 25494461]
[34]
Tang, D.; Wang, G.; Zhou, J.M. Receptor kinases in plant pathogen interactions: more than pattern recognition. Plant Cell, 2017, 29(4), 618-637.
[http://dx.doi.org/10.1105/tpc.16.00891] [PMID: 28302675]
[35]
Wu, X.; Valli, A.; García, J.; Zhou, X.; Cheng, X. The tug-of-war between plants and viruses: great progress and many remaining questions. Viruses, 2019, 11(3), 203.
[http://dx.doi.org/10.3390/v11030203] [PMID: 30823402]
[36]
Fu, Z.Q.; Dong, X. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol., 2013, 64(1), 839-863.
[http://dx.doi.org/10.1146/annurev-arplant-042811-105606] [PMID: 23373699]
[37]
Seal, S.E. vandenBosch, F.; Jeger, M.J. Factors influencing begomovirus evolution and their increasing global significance: Implications for sustainable control. Crit. Rev. Plant Sci., 2006, 25(1), 23-46.
[http://dx.doi.org/10.1080/07352680500365257]
[38]
Butterbach, P.; Verlaan, M.G.; Dullemans, A.; Lohuis, D.; Visser, R.G.F.; Bai, Y.; Kormelink, R. Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc. Natl. Acad. Sci. USA, 2014, 111(35), 12942-12947.
[http://dx.doi.org/10.1073/pnas.1400894111] [PMID: 25136118]
[39]
Gonsalves, D. Control of papaya ringspot virus in papaya: a case study. Annu. Rev. Phytopathol., 1998, 36(1), 415-437.
[http://dx.doi.org/10.1146/annurev.phyto.36.1.415] [PMID: 15012507]
[40]
Iki, T.; Tschopp, M.A.; Voinnet, O. Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA, 2017, 23(5), 639-654.
[http://dx.doi.org/10.1261/rna.060434.116] [PMID: 28148824]
[41]
Soni, S.K.; Mishra, M.K.; Mishra, M.; Kumari, S.; Saxena, S.; Shukla, V.; Tiwari, S.; Shirke, P. Papaya Leaf Curl Virus (PaLCuV) Infection on Papaya (Carica papaya L.) plants alters anatomical and physiological properties and reduces bioactive components. Plants, 2022, 11(5), 579.
[http://dx.doi.org/10.3390/plants11050579] [PMID: 35270048]
[42]
Pandey, V.; Srivastava, A.; Gaur, R.K. Begomovirus: A curse for the agricultural crops. Arch. Phytopathol. Pflanzenschutz, 2021, 54(15-16), 949-978.
[http://dx.doi.org/10.1080/03235408.2020.1868909]
[43]
Chakraborty, S. Tomato leaf curl viruses from India (Geminiviridae). In: Encyclopaedia of Virology; Elsevier: London, UK, 2008; pp. 124-133.
[44]
Akhter, A.; Akhtar, S.; Saeed, M.; Mansoor, S. Chili leaf curl betasatellite enhances symptoms induced by tomato leaf curl New Delhi virus, a bipartite begomovirus. Int. J. Agric. Biol., 2014, 16, 1225-1228.
[45]
Cui, X.; Li, G.; Wang, D.; Hu, D.; Zhou, X. A Begomovirus DNAbeta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J. Virol., 2005, 79(16), 10764-10775.
[http://dx.doi.org/10.1128/JVI.79.16.10764-10775.2005] [PMID: 16051868]
[46]
Singh, A.K.; Kushwaha, N.; Chakraborty, S. Synergistic interaction among begomoviruses leads to the suppression of host defense-related gene expression and breakdown of resistance in chilli. Appl. Microbiol. Biotechnol., 2016, 100(9), 4035-4049.
[http://dx.doi.org/10.1007/s00253-015-7279-5] [PMID: 26780359]
[47]
Shahid, M.S.; Yoshida, S.; Khatri-Chhetri, G.B.; Briddon, R.W.; Natsuaki, K.T. Complete nucleotide sequence of a monopartite Begomovirus and associated satellites infecting Carica papaya in Nepal. Virus Genes, 2013, 46(3), 581-584.
[http://dx.doi.org/10.1007/s11262-013-0888-0] [PMID: 23397078]
[48]
Idris, A.M.; Mills-Lujan, K.; Martin, K.; Brown, J.K. Melon chlorotic leaf curl virus: characterization and differential reassortment with closest relatives reveal adaptive virulence in the squash leaf curl virus clade and host shifting by the host-restricted bean calico mosaic virus. J. Virol., 2008, 82(4), 1959-1967.
[http://dx.doi.org/10.1128/JVI.01992-07] [PMID: 18057231]
[49]
Nawaz-ul-Rehman, M.S.; Fauquet, C.M. Evolution of geminiviruses and their satellites. FEBS Lett., 2009, 583(12), 1825-1832.
[http://dx.doi.org/10.1016/j.febslet.2009.05.045] [PMID: 19497325]
[50]
Saunders, K.; Briddon, R.W.; Stanley, J. Replication promiscuity of DNA-β satellites associated with monopartite begomoviruses; deletion mutagenesis of the Ageratum yellow vein virus DNA-β satellite localizes sequences involved in replication. J. Gen. Virol., 2008, 89(12), 3165-3172.
[http://dx.doi.org/10.1099/vir.0.2008/003848-0] [PMID: 19008407]
[51]
Silva, F.N.; Lima, A.T.M.; Rocha, C.S.; Castillo-Urquiza, G.P.; Alves-Júnior, M.; Zerbini, F.M. Recombination and pseudorecombination driving the evolution of the begomoviruses Tomato severe rugose virus (ToSRV) and Tomato rugose mosaic virus (ToRMV): two recombinant DNA-A components sharing the same DNA-B. Virol. J., 2014, 11(1), 66.
[http://dx.doi.org/10.1186/1743-422X-11-66] [PMID: 24708727]
[52]
Kushwaha, N.; Singh, A.K.; Basu, S.; Chakraborty, S. Differential response of diverse solanaceous hosts to tomato leaf curl New Delhi virus infection indicates coordinated action of NBS-LRR and RNAi-mediated host defense. Arch. Virol., 2015, 160(6), 1499-1509.
[http://dx.doi.org/10.1007/s00705-015-2399-x] [PMID: 25894479]
[53]
Petty, I.T.D.; Carter, S.C.; Morra, M.R.; Jeffrey, J.L.; Olivey, H.E. Bipartite geminivirus host adaptation determined cooperatively by coding and noncoding sequences of the genome. Virology, 2000, 277(2), 429-438.
[http://dx.doi.org/10.1006/viro.2000.0620] [PMID: 11080490]
[54]
Tomás, D.M.; Cañizares, M.C.; Abad, J.; Fernández-Muñoz, R.; Moriones, E. Resistance to Tomato yellow leaf curl virus accumulation in the tomato wild relative Solanum habrochaites associated with the C4 viral protein. Mol. Plant Microbe Interact., 2011, 24(7), 849-861.
[http://dx.doi.org/10.1094/MPMI-12-10-0291] [PMID: 21405986]
[55]
Jeevalatha, A.; Siddappa, S.; Kumar, A.; Kaundal, P.; Guleria, A.; Sharma, S.; Nagesh, M.; Singh, B.P. An insight into differentially regulated genes in resistant and susceptible genotypes of potato in response to tomato leaf curl New Delhi virus-[potato] infection. Virus Res., 2017, 232, 22-33.
[http://dx.doi.org/10.1016/j.virusres.2017.01.015] [PMID: 28115198]
[56]
Anwar, S. Distinct association of an alphasatellite and a betasatellite with Tomato leaf curl New Delhi virus in field-infected cucurbit. J. Gen. Plant Pathol., 2017, 83(3), 185-188.
[http://dx.doi.org/10.1007/s10327-017-0709-8]
[57]
Hameed, A.; Shakir, S.; Zaidi, S.S.E.A. Evolutionary factors in the geminivirus emergence. In: Geminiviruses; Springer: Cham, 2019; pp. 123-135.
[http://dx.doi.org/10.1007/978-3-030-18248-9_7]
[58]
Domínguez-Durán, G.; Rodríguez-Negrete, E.A.; Morales-Aguilar, J.J.; Camacho-Beltrán, E.; Romero-Romero, J.L.; Rivera-Acosta, M.A.; Leyva-López, N.E.; Arroyo-Becerra, A.; Méndez-Lozano, J. Molecular and biological characterization of Watermelon chlorotic stunt virus (WmCSV): An Eastern Hemisphere begomovirus introduced in the Western Hemisphere. Crop Prot., 2018, 103, 51-55.
[http://dx.doi.org/10.1016/j.cropro.2017.09.006]
[59]
Varma, A.; Malathi, V.G. Emerging geminivirus problems: A serious threat to crop production. Ann. Appl. Biol., 2003, 142(2), 145-164.
[http://dx.doi.org/10.1111/j.1744-7348.2003.tb00240.x]
[60]
Polston, J.E.; Bois, D.; Serra, C.A.; Concepcion, S. First report of a tomato yellow leaf curl-like geminivirus in the Western Hemisphere. Plant Dis., 1994, 78(8), 831B.
[http://dx.doi.org/10.1094/PD-78-0831B]
[61]
Morales, F.J.; Jones, P.G. The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res., 2004, 100(1), 57-65.
[http://dx.doi.org/10.1016/j.virusres.2003.12.014] [PMID: 15036836]
[62]
Saunders, K.; Bedford, I.D.; Stanley, J. Adaptation from whitefly to leafhopper transmission of an autonomously replicating nanovirus-like DNA component associated with ageratum yellow vein disease. J. Gen. Virol., 2002, 83(4), 907-913.
[http://dx.doi.org/10.1099/0022-1317-83-4-907] [PMID: 11907341]
[63]
Padidam, M.; Sawyer, S.; Fauquet, C.M. Possible emergence of new geminiviruses by frequent recombination. Virology, 1999, 265(2), 218-225.
[http://dx.doi.org/10.1006/viro.1999.0056] [PMID: 10600594]
[64]
George, B.; Alam, C.M.; Kumar, R.V.; Gnanasekaran, P.; Chakraborty, S. Potential linkage between compound microsatellites and recombination in geminiviruses: Evidence from comparative analysis. Virology, 2015, 482, 41-50.
[http://dx.doi.org/10.1016/j.virol.2015.03.003] [PMID: 25817404]
[65]
Zaidi, S.S.A.; Shafiq, M.; Amin, I.; Scheffler, B.E.; Scheffler, J.A.; Briddon, R.W.; Mansoor, S. Frequent occurrence of tomato leaf curl New Delhi virus in cotton leaf curl disease affected cotton in Pakistan. PLoS One, 2016, 11(5), e0155520.
[http://dx.doi.org/10.1371/journal.pone.0155520] [PMID: 27213535]
[66]
Kumar, R.V.; Singh, A.K.; Singh, A.K.; Yadav, T.; Basu, S.; Kushwaha, N.; Chattopadhyay, B.; Chakraborty, S. Complexity of begomovirus and betasatellite populations associated with chilli leaf curl disease in India. J. Gen. Virol., 2015, 96(10), 3143-3158.
[http://dx.doi.org/10.1099/jgv.0.000254] [PMID: 26251220]
[67]
Lefeuvre, P.; Moriones, E. Recombination as a motor of host switches and virus emergence: geminiviruses as case studies. Curr. Opin. Virol., 2015, 10, 14-19.
[http://dx.doi.org/10.1016/j.coviro.2014.12.005] [PMID: 25559880]
[68]
Martin, D.P.; Williamson, C.; Posada, D. RDP2: Recombination detection and analysis from sequence alignments. Bioinformatics, 2005, 21(2), 260-262.
[http://dx.doi.org/10.1093/bioinformatics/bth490] [PMID: 15377507]
[69]
Martin, D.P.; Murrell, B.; Golden, M.; Khoosal, A.; Muhire, B. RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol., 2015, 1(1), 1-5.
[http://dx.doi.org/10.1093/ve/vev003] [PMID: 27774275]
[70]
Wylie, S.J.; Jones, R.A.C. Role of recombination in the evolution of host specialization within bean yellow mosaic virus. Phytopathology, 2009, 99(5), 512-518.
[http://dx.doi.org/10.1094/PHYTO-99-5-0512] [PMID: 19351247]
[71]
van der Walt, E.; Rybicki, E.P.; Varsani, A.; Polston, J.E.; Billharz, R.; Donaldson, L.; Monjane, A.L.; Martin, D.P. Rapid host adaptation by extensive recombination. J. Gen. Virol., 2009, 90(3), 734-746.
[http://dx.doi.org/10.1099/vir.0.007724-0] [PMID: 19218220]
[72]
Vandamme, A. Basic concepts of molecular evolution. In: The phylogenetic handbook: A practical approach to phylogenetic analysis and hypothesis testing; Lemey, P.; Saleni, M.; Vandamme, A.M., Eds.; Cambridge University Press: Cambridge, 2009; pp. 3-29.
[http://dx.doi.org/10.1017/CBO9780511819049.003]
[73]
Duffy, S.; Holmes, E.C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol., 2009, 90(6), 1539-1547.
[http://dx.doi.org/10.1099/vir.0.009266-0] [PMID: 19264617]
[74]
Follett, P.A. Insect-plant interactions: Host selection, herbivory, and plant resistance - an introduction. Entomol. Exp. Appl., 2017, 162(1), 1-3.
[http://dx.doi.org/10.1111/eea.12524]
[75]
Carvalho, M.G.; Bortolotto, O.C.; Ventura, M.U. Aromatic plants affect the selection of host tomato plants by Bemisia tabaci biotype B. Entomol. Exp. Appl., 2017, 162(1), 86-92.
[http://dx.doi.org/10.1111/eea.12534]
[76]
Knight, I.A.; Rains, G.C.; Culbreath, A.K.; Toews, M.D. Thrips counts and disease incidence in response to reflective particle films and conservation tillage in cotton and peanut cropping systems. Entomol. Exp. Appl., 2017, 162(1), 19-29.
[http://dx.doi.org/10.1111/eea.12523] [PMID: 30046183]
[77]
Roditakis, E.; Stavrakaki, M.; Grispou, M.; Achimastou, A.; Van Waetermeulen, X.; Nauen, R.; Tsagkarakou, A. Flupyradifurone effectively manages whitefly Bemisia tabaci MED (Hemiptera: Aleyrodidae) and tomato yellow leaf curl virus in tomato. Pest Manag. Sci., 2017, 73(8), 1574-1584.
[http://dx.doi.org/10.1002/ps.4577] [PMID: 28345196]
[78]
Sarwar, M.; Sattar, M. An analysis of comparative efficacies of various insecticides on the densities of important insect pests and the natural enemies of cotton, Gossypium hirsutum. Pak. J. Zool., 2016, 48, 131-136.
[79]
Hasanuzzaman, M.; Bhuyan, M.; Nahar, K.; Hossain, M.; Mahmud, J.; Hossen, M.; Masud, A. Moumita.; Fujita, M. Potassium: A vital regulator of plant responses and tolerance to abiotic stresses. Agronomy (Basel), 2018, 8(3), 31.
[http://dx.doi.org/10.3390/agronomy8030031]
[80]
Rahman, M.; Hussain, D.; Malik, T.A.; Zafar, Y. Genetics of resistance to cotton leaf curl disease in Gossypium hirsutum. Plant Pathol., 2005, 54(6), 764-772.
[http://dx.doi.org/10.1111/j.1365-3059.2005.01280.x]
[81]
Li, J.; Zhu, L.; Hull, J.J.; Liang, S.; Daniell, H.; Jin, S.; Zhang, X. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly). Plant Biotechnol. J., 2016, 14(10), 1956-1975.
[http://dx.doi.org/10.1111/pbi.12554] [PMID: 26923339]
[82]
Rahman, M.; Ali, A.; Khan, A.Q.; Abbas, A.; Rahmat, Z.; Sarfraz, Z. Use of genetic and genomic approaches for combating cotton leaf curl disease in Pakistan. Proc. ICGI, 2014, pp. 25-28.
[83]
Nazeer, W.; Tipu, A.L.; Ahmad, S.; Mahmood, K.; Mahmood, A.; Zhou, B. Evaluation of cotton leaf curl virus resistance in BC1, BC2, and BC3 progenies from an interspecific cross between Gossypium arboreum and Gossypium hirsutum. PLoS One, 2014, 9(11), e111861.
[http://dx.doi.org/10.1371/journal.pone.0111861] [PMID: 25372141]
[84]
Iqbal, M.J.; Aziz, N.; Saeed, N.A.; Zafar, Y.; Malik, K.A. Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor. Appl. Genet., 1997, 94(1), 139-144.
[http://dx.doi.org/10.1007/s001220050392] [PMID: 19352756]
[85]
Rahman, M.; Khan, A.Q.; Rahmat, Z.; Iqbal, M.A.; Zafar, Y. Genetics and genomics of cotton leaf curl disease, its viral causal agents and whitefly vector: A way forward to sustain cotton fiber security. Front. Plant Sci., 2017, 8, 1157.
[http://dx.doi.org/10.3389/fpls.2017.01157] [PMID: 28725230]
[86]
Goldbach, R.; Bucher, E.; Prins, M. Resistance mechanisms to plant viruses: an overview. Virus Res., 2003, 92(2), 207-212.
[http://dx.doi.org/10.1016/S0168-1702(02)00353-2] [PMID: 12686431]
[87]
Blevins, T.; Rajeswaran, R.; Aregger, M.; Borah, B.K.; Schepetilnikov, M.; Baerlocher, L.; Farinelli, L.; Meins, F., Jr; Hohn, T.; Pooggin, M.M. Massive production of small RNAs from a non-coding region of Cauliflower mosaic virus in plant defense and viral counter-defense. Nucleic Acids Res., 2011, 39(12), 5003-5014.
[http://dx.doi.org/10.1093/nar/gkr119] [PMID: 21378120]
[88]
Singh, R.K.; Pandey, S.P. Evolution of structural and functional diversification among plant Argonautes. Plant Signal. Behav., 2015, 10(10), e1069455.
[http://dx.doi.org/10.1080/15592324.2015.1069455] [PMID: 26237574]
[89]
Amudha, J.; Balasubramani, G.; Malathi, V.G.; Monga, D. Cotton leaf curl virus resistance transgenics with antisense coat protein gene (AV1). Curr. Sci., 2011, 101, 300-307.
[90]
Khalid, A.; Zhang, Q.; Yasir, M.; Li, F. Small RNA based genetic engineering for plant viral resistance: application in crop protection. Front. Microbiol., 2017, 8, 43.
[http://dx.doi.org/10.3389/fmicb.2017.00043] [PMID: 28167936]
[91]
Yasmeen, A.; Kiani, S.; Butt, A.; Rao, A.Q.; Akram, F.; Ahmad, A.; Nasir, I.A.; Husnain, T.; Mansoor, S.; Amin, I.; Aftab, S.; Zubair, M.; Tahir, M.N.; Akhtar, S.; Scheffler, J.; Scheffler, B. Amplicon-based RNA interference targeting V2 gene of Cotton Leaf Curl Kokhran Virus-Burewala strain can provide resistance in transgenic cotton plants. Mol. Biotechnol., 2016, 58(12), 807-820.
[http://dx.doi.org/10.1007/s12033-016-9980-8] [PMID: 27757798]
[92]
Ali, I.; Amin, I.; Briddon, R.W.; Mansoor, S. Artificial microRNA-mediated resistance against the monopartite begomovirus Cotton leaf curl Burewala virus. Virol. J., 2013, 10(1), 231-238.
[http://dx.doi.org/10.1186/1743-422X-10-231] [PMID: 23844988]
[93]
Mao, Y.B.; Liu, Y.Q.; Chen, D.Y.; Chen, F.Y.; Fang, X.; Hong, G.J.; Wang, L.J.; Wang, J.W.; Chen, X.Y. Jasmonate response decay and defense metabolite accumulation contributes to age-regulated dynamics of plant insect resistance. Nat. Commun., 2017, 8(1), 13925.
[http://dx.doi.org/10.1038/ncomms13925] [PMID: 28067238]
[94]
Eini, O.; Dogra, S.; Selth, L.A.; Dry, I.B.; Randles, J.W.; Rezaian, M.A. Interaction with a host ubiquitin-conjugating enzyme is required for the pathogenicity of a geminiviral DNA beta satellite. Mol. Plant Microbe Interact., 2009, 22(6), 737-746.
[http://dx.doi.org/10.1094/MPMI-22-6-0737] [PMID: 19445598]
[95]
Zaidi, S.S.; Mansoor, S.; Ali, Z.; Tashkandi, M. Engineering plants for geminivirus resistance with CRISPR/Cas9system. Trends Plant Sci., 2016, 21, 279-281.
[96]
Iqbal, Z.; Sattar, M.N.; Kvarnheden, A.; Mansoor, S.; Briddon, R.W. Effects of the mutation of selected genes of Cotton leaf curl Kokhran virus on infectivity, symptoms and the maintenance of cotton leaf curl Multan betasatellite. Virus Res., 2012, 169(1), 107-116.
[http://dx.doi.org/10.1016/j.virusres.2012.07.016] [PMID: 22871297]
[97]
Bikard, D.; Jiang, W.; Samai, P.; Hochschild, A.; Zhang, F.; Marraffini, L.A. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res., 2013, 41(15), 7429-7437.
[http://dx.doi.org/10.1093/nar/gkt520] [PMID: 23761437]
[98]
Cong, L.; Ran, F.A.; Cox, D.; Lin, S.; Barretto, R.; Habib, N.; Hsu, P.D.; Wu, X.; Jiang, W.; Marraffini, L.A.; Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121), 819-823.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[99]
Baltes, N.J.; Hummel, A.W.; Konecna, E.; Cegan, R.; Bruns, A.N.; Bisaro, D.M.; Voytas, D.F. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants, 2015, 1(10), 15145.
[http://dx.doi.org/10.1038/nplants.2015.145] [PMID: 34824864]
[100]
Ali, Z.; Abulfaraj, A.; Idris, A.; Ali, S.; Tashkandi, M.; Mahfouz, M.M. CRISPR/Cas9-mediated viral interference in plants. Genome Biol., 2015, 16(1), 238-248.
[http://dx.doi.org/10.1186/s13059-015-0799-6] [PMID: 26556628]
[101]
Ji, X.; Zhang, H.; Zhang, Y.; Wang, Y.; Gao, C. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants, 2015, 1(10), 15144.
[http://dx.doi.org/10.1038/nplants.2015.144] [PMID: 27251395]
[102]
Zaidi, S.S.A.; Briddon, R.W.; Mansoor, S. Engineering dual begomovirus-Bemisia tabaci resistance in plants. Trends Plant Sci., 2017, 22(1), 6-8.
[http://dx.doi.org/10.1016/j.tplants.2016.11.005] [PMID: 27890609]
[103]
Castellano, M.M.; Sanz-Burgos, A.P.; Gutiérrez, C. Initiation of DNA replication in a eukaryotic rolling-circle replicon: identification of multiple DNA-protein complexes at the geminivirus origin 1 1Edited by I. B. Holland. J. Mol. Biol., 1999, 290(3), 639-652.
[http://dx.doi.org/10.1006/jmbi.1999.2916] [PMID: 10395820]
[104]
Shukla, A.K.; Upadhyay, S.K.; Mishra, M.; Saurabh, S.; Singh, R.; Singh, H.; Thakur, N.; Rai, P.; Pandey, P.; Hans, A.L.; Srivastava, S.; Rajapure, V.; Yadav, S.K.; Singh, M.K.; Kumar, J.; Chandrashekar, K.; Verma, P.C.; Singh, A.P.; Nair, K.N.; Bhadauria, S.; Wahajuddin, M.; Singh, S.; Sharma, S. Omkar; Upadhyay, R.S.; Ranade, S.A.; Tuli, R.; Singh, P.K. Expression of an insecticidal fern protein in cotton protects against whitefly. Nat. Biotechnol., 2016, 34(10), 1046-1051.
[http://dx.doi.org/10.1038/nbt.3665] [PMID: 27598229]
[105]
Vanderschuren, H.; Stupak, M.; Fütterer, J.; Gruissem, W.; Zhang, P. Engineering resistance to geminiviruses? review and perspectives. Plant Biotechnol. J., 2007, 5(2), 207-220.
[http://dx.doi.org/10.1111/j.1467-7652.2006.00217.x] [PMID: 17309676]
[106]
Javaid, S.; Amin, I.; Jander, G.; Mukhtar, Z.; Saeed, N.A.; Mansoor, S. A transgenic approach to control hemipteran insects by expressing insecticidal genes under phloem-specific promoters. Sci. Rep., 2016, 6(1), 34706.
[http://dx.doi.org/10.1038/srep34706] [PMID: 27708374]
[107]
Gupta, M.; DeKelver, R.C.; Palta, A.; Clifford, C.; Gopalan, S.; Miller, J.C.; Novak, S.; Desloover, D.; Gachotte, D.; Connell, J.; Flook, J.; Patterson, T.; Robbins, K.; Rebar, E.J.; Gregory, P.D.; Urnov, F.D.; Petolino, J.F. Transcriptional activation of Brassica napus β-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnol. J., 2012, 10(7), 783-791.
[http://dx.doi.org/10.1111/j.1467-7652.2012.00695.x] [PMID: 22520333]
[108]
Khan, Z.; Khan, S.H.; Mubarik, M.S.; Sadia, B.; Ahmad, A. Use of TALEs and TALEN technology for genetic improvement of plants. Plant Mol. Biol. Report., 2017, 35(1), 1-19.
[http://dx.doi.org/10.1007/s11105-016-0997-8]
[109]
Rana, V.S.; Singh, S.T.; Priya, N.G.; Kumar, J. Arsenophonus GroEL interacts with CLCuV and is localized in midgut and salivary gland of whitefly B. tabaci. PLoS One, 2012, 7, e42168.
[110]
Akad, F.; Eybishtz, A.; Edelbaum, D.; Gorovits, R.; Dar-Issa, O.; Iraki, N.; Czosnek, H. Making a friend from a foe: expressing a GroEL gene from the whitefly Bemisia tabaci in the phloem of tomato plants confers resistance to tomato yellow leaf curl virus. Arch. Virol., 2007, 152(7), 1323-1339.
[http://dx.doi.org/10.1007/s00705-007-0942-0] [PMID: 17334947]
[111]
Gorovits, R.; Moshe, A.; Ghanim, M.; Czosnek, H. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One, 2013, 8, e70280.
[http://dx.doi.org/10.1371/journal.pone.0070280]
[112]
Becker, N.; Rimbaud, L.; Chiroleu, F.; Reynaud, B.; Thébaud, G.; Lett, J.M. Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci. Sci. Rep., 2015, 5(1), 17696.
[http://dx.doi.org/10.1038/srep17696] [PMID: 26625871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy