Skip to main content
Log in

Halo Radius (Splashback Radius) of Groups and Clusters of Galaxies on Small Scales

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

We report the results of a study of the distribution of galaxies in the projection along the radius (\(R \leqslant 3{{R}_{{200{\text{c}}}}}\)) for 157 groups and clusters of galaxies in the local Universe (0.01 < \(z\) < 0.10) with line-of-sight velocity dispersions 200 < \(\sigma \) < 1100 km s–1. We introduce a new observed boundary for the halos of clusters of galaxies, which we identify with the splashback radius \({{R}_{{{\text{sp}}}}}\). We also identified the core of groups/clusters of galaxies with the radius \({{R}_{{\text{c}}}}\). These radii are determined by the observed integrated distribution of the number of galaxies as a function of squared angular radius from the center of the group/cluster, which (usually) coincides with the brightest galaxy. We found for the entire sample that the boundary of dark matter \({{R}_{{{\text{sp}}}}}\) for groups/clusters of galaxies is proportional to the radius \({{R}_{{{\text{200}}}}}\) of the virialized region. We measured the mean radius \(\langle {{R}_{{{\text{sp}}}}}\rangle = 1.14 \pm 0.02\) Mpc for groups of galaxies (\(\sigma \leqslant 400\) km s–1) and \(\langle {{R}_{{{\text{sp}}}}}\rangle = 2.00 \pm 0.07\) Mpc for clusters of galaxies (\(\sigma > 400\) km s–1). The mean ratio of radii is \(\langle {{{{R}_{{{\text{sp}}}}}} \mathord{\left/ {\vphantom {{{{R}_{{{\text{sp}}}}}} {{{R}_{{{\text{200c}}}}}}}} \right. \kern-0em} {{{R}_{{{\text{200c}}}}}}}\rangle = 1.40 \pm 0.02\), or \(\langle {{{{R}_{{{\text{sp}}}}}} \mathord{\left/ {\vphantom {{{{R}_{{{\text{sp}}}}}} {{{R}_{{{\text{200m}}}}}}}} \right. \kern-0em} {{{R}_{{{\text{200m}}}}}}}\rangle = 0.88 \pm 0.02\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Here \({{R}_{{{\text{200c}}}}}\) (hereafter \({{R}_{{200}}}\)) is the cluster radius inside which the density exceeds the critical density of the Universe by a factor of 200. In our studies is determined by the dispersion of line-of-sight velocities of galaxies in clusters. In simulations another radius—\({{R}_{{{\text{200m}}}}}\)—is often used, inside which the density exceeds the average density of the Universe by a factor of 200.

REFERENCES

  1. S. Adhikari, N. Dalal, and R. T. Chamberlain, J. Cosmology and Astroparticle Physics 11, id. 019 (2014).

  2. S. Adhikari, N. Dalal, and J. Clampitt, J. Cosmology and Astroparticle Physics 07, id. 022 (2016).

  3. M. L. Balogh, J. F. Navarro, and S. L. Morris, Astrophys. J. 540, 113 (2000).

    Article  ADS  Google Scholar 

  4. E. Baxter, C. Chang, B. Jain, et al., Astrophys. J. 841, article id. 841 (2017).

  5. P. Busch and S. D. M. White, Monthly Notices Royal Astron. Soc. 470, 4767 (2017).

    Article  ADS  Google Scholar 

  6. R. G. Carlberg, H. K. C. Yee, E. Ellingson, et al., Astrophys. J. 485, L13 (1997).

    Article  ADS  Google Scholar 

  7. C. Chang, E. Baxter, B. Jain, et al., Astrophys. J. 864, article id. 83 (2018).

  8. O. Contigiani, H. Hoekstra, and Y. M. Bahé, Monthly Notices Royal Astron. Soc. 485, 408 (2019).

    Article  ADS  Google Scholar 

  9. B. Diemer and A. V. Kravtsov, Astrophys. J. 789, articleid. 1 (2014).

  10. M. Fong and J. Han, Monthly Notices Royal Astron. Soc. 503, 4250 (2021).

    Article  ADS  Google Scholar 

  11. S. P. D. Gill, A. Knebe, and B. K. Gibson, Monthly Notices Royal Astron. Soc. 356, 1327 (2005).

    Article  ADS  Google Scholar 

  12. R. J. III Gott, Astrophys. J. 186, 481 (1973).

    Article  ADS  Google Scholar 

  13. J. E. Gunn and R. J. III Gott Astrophys. J. 176, 1 (1972).

    Article  ADS  Google Scholar 

  14. C. P. Haines, M. J. Pereira, G. P. Smith, et al., Astrophys. J. 806, article id. 101 (2015).

  15. A. I. Kopylov and F. G. Kopylova, Astrophysical Bulletin 70, 243 (2015).

    Article  ADS  Google Scholar 

  16. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 71, 257 (2016).

    Article  ADS  Google Scholar 

  17. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 72, 363 (2017).

    Article  ADS  Google Scholar 

  18. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 73, 267 (2018).

    Article  ADS  Google Scholar 

  19. F. G. Kopylova and A. I. Kopylov, Astrophysical Bulletin 74, 365 (2019).

    Article  ADS  Google Scholar 

  20. G. A. Mamon, T. Sanchis, E. Salvador-Sole, and J. M. Solanes, Astron. and Astrophys. 414, 445 (2004).

    Article  ADS  Google Scholar 

  21. S. More, B. Diemer, and A. V. Kravtsov, Astrophys. J. 810, article id. 36 (2015).

  22. S. More, H. Miyatake, M. Takada, et al., Astrophys. J. 825, article id. 39 (2016).

  23. K. A. Pimbblet, Monthly Notices Royal Astron. Soc. 411, 2637 (2010).

    Article  ADS  Google Scholar 

  24. T. Shin, S. Adhikari, E. J. Baxter, et al., Monthly Notices Royal Astron. Soc. 487, 2900 (2019).

    Article  ADS  Google Scholar 

  25. K. Umetsu and B. Diemer, Astrophys. J. 836, article id. 231 (2017).

  26. D. Zúrcher and S. More, Astrophys. J. 874, article id. 184 (2019).

Download references

ACKNOWLEDGMENTS

This research has made use of the NASA/IPAC Extragalactic Database (NED, http://nedwww.ipac.caltech.edu), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration, Sloan Digital Sky Survey (SDSS, http://www.sdss.org), which is supported by Alfred P. Sloan Foundation, the participant institutes of the SDSS collaboration, National Science Foundation, and the United States Department of Energy and Two Micron All Sky Survey (2MASS, http://www.ipac.caltech.edu/2mass/releases/allsky/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Kopylova.

Ethics declarations

The authors declare that there is no conflict of interest.

Additional information

Translated by A. Dambis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylova, F.G., Kopylov, A.I. Halo Radius (Splashback Radius) of Groups and Clusters of Galaxies on Small Scales. Astrophys. Bull. 77, 347–360 (2022). https://doi.org/10.1134/S199034132204006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034132204006X

Keywords:

Navigation