Skip to main content
Log in

Kinematics and Origin of Gas in the Disk Galaxy NGC 2655

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—The new observational data concerning distribution, excitation, and kinematics of the ionized gas in the giant early-type galaxy NGC 2655 obtained at the 6m telescope of the Special Astrophysical Observatory (SAO RAS) and at the 2.5 m telescope of the Caucasian Mountain Observatory (CMO SAI MSU) are presented in this work. The joint analysis of these and earlier spectral observations has allowed us to make a conclusion about multiple nature of the gas in NGC 2655. Together with a proper large gaseous disk experiencing regular circular rotation in the equatorial plane of the stellar potential of the galaxy for billions years, we observe also remnants of a merged small satellite having striked the central part of NGC 2655 almost vertically for some 10 million years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. The data are provided by the DESI Legacy Imaging Surveys website legacysurvey.org.

  2. Let us note that although the FPI instrumental profile differs from the Gaussian one and is described by the Voigt profile and, in the case of the given FPI with a relatively low resolution, the observed line profiles differ little from the Gaussian one which can be clearly seen in Fig. 5.2.

REFERENCES

  1. V. L. Afanasiev and A.V. Moiseev, Baltic Astronomy 20, 363 (2011).

    ADS  Google Scholar 

  2. M. G. Allen, B. A. Groves, M. A. Dopita, et al., Astrophys. J. Suppl. 178 (1), 20 (2008).

    Article  ADS  Google Scholar 

  3. J. A. Baldwin, M. M. Phillips, and R. Terlevich, Publ. Astron. Soc. Pacific 93, 5 (1981).

    Article  ADS  Google Scholar 

  4. A. Y. K. Bouquin, A. Gil de Paz, J. C. Muñoz-Mateos, et al., Astrophys. J. Suppl. 234 (2), article id. 18 (2018).

  5. B. Catinella, A. Saintonge, S. Janowiecki, et al., Monthly Notices Royal Astron. Soc. 476 (1), 875 (2018).

    Article  ADS  Google Scholar 

  6. L. Cortese, B. Catinella, R. H. W. Cook, and S. Janowiecki,Monthly Notices Royal Astron. Soc. 494 (1), L42 (2020).

    Article  ADS  Google Scholar 

  7. T. A. Davis, K. Alatalo, M. Sarzi, et al., Monthly Notices Royal Astron. Soc. 417 (2), 882 (2011).

    Google Scholar 

  8. G. Dumas, C. G. Mundell, E. Emsellem, and N. M. Nagar, Monthly Notices Royal Astron. Soc. 379 (4), 1249 (2007).

    Article  ADS  Google Scholar 

  9. A. M. Garcia, Astron. and Astrophys. Suppl. 100, 47 (1993).

    ADS  Google Scholar 

  10. M.Grossi, S. di Serego Alighieri, C. Giovanardi, et al., Astron. and Astrophys. 498 (2), 407 (2009).

    Article  ADS  Google Scholar 

  11. J. E. Gunn and J. R. Gott, III, Astrophys. J. 176, 1 (1972).

    Article  ADS  Google Scholar 

  12. L. C. Ho and J. S. Ulvestad, Astrophys. J. Suppl. 133 (1), 77 (2001).

    Article  ADS  Google Scholar 

  13. E. P. Hubble, Realm of the Nebulae (Yale University Press, New Haven, 1936).

    MATH  Google Scholar 

  14. W. K. Huchtmeier and O. G. Richter, Astron. and Astrophys. 109, 331 (1982).

    ADS  Google Scholar 

  15. E. Hummel, J. M. van der Hulst, and J. M. Dickey, Astron. and Astrophys. 134, 207 (1984).

    ADS  Google Scholar 

  16. R. Ibata, M. Irwin, G. F. Lewis, and A. Stolte, Astrophys. J. 547 (2), L133 (2001).

    Article  ADS  Google Scholar 

  17. I. Y. Katkov, A. Y. Kniazev, and O. K. Sil’chenko, Astron. J. 150 (1), article id. 24 (2015).

  18. G. Kauffmann, T. M. Heckman, C. Tremonti, et al., Monthly Notices Royal Astron. Soc. 346 (4), 1055 (2003).

    Article  ADS  Google Scholar 

  19. W. C. Keel and E. Hummel, Astron. and Astrophys. 194, 90 (1988).

    ADS  Google Scholar 

  20. L. J. Kewley, M. A. Dopita, R. S. Sutherland, et al., Astrophys. J. 556 (1), 121 (2001).

    Article  ADS  Google Scholar 

  21. K. Kuijken, D. Fisher, and M. R. Merrifield, Monthly Notices Royal Astron. Soc. 283 (2), 543 (1996).

    Article  ADS  Google Scholar 

  22. C. F. P. Laporte, K. V. Johnston, F. A. Gómez, et al., Monthly Notices Royal Astron. Soc. 481 (1), 286 (2018).

    Article  ADS  Google Scholar 

  23. R. B. Larson, B. M. Tinsley, and C. N. Caldwell, Astrophys. J. 237, 692 (1980).

    Article  ADS  Google Scholar 

  24. B. M. Lewis and R. D. Davies, Monthly Notices Royal Astron. Soc. 165, 213 (1973).

    Article  ADS  Google Scholar 

  25. R. A. Marino, F. F. Rosales-Ortega, S. F. Sánchez, et al., Astron. and Astrophys. 559, id. A114 (2013).

  26. A. V. Moiseev and O. V. Egorov, Astrophysical Bulletin 63, 181 (2008).

  27. M. Pettini and B. E. J. Pagel, Monthly Notices Royal Astron. Soc. 348 (3), L59 (2004).

    Article  ADS  Google Scholar 

  28. H. Salo, E. Laurikainen, J. Laine, et al., Astrophys. J. Suppl. 219 (1), 4 (2015).

    Article  ADS  Google Scholar 

  29. P. Serra, T. Oosterloo, R. Morganti, et al., Monthly Notices Royal Astron. Soc. 422 (3), 1835 (2012).

    Article  ADS  Google Scholar 

  30. W. W. Shane and N. Krumm, IAU Symp. 100, pp. 105–106 (1983).

  31. N. Shatsky, A. Belinski, A. Dodin, et al., in Proc. All-Russian Conf. on Ground-Based Astronomy in Russia. 21st Century, Nizhny Arkhyz, Russia, 2020, Ed. by I. I. Romanyuk, I. A. Yakunin, A. F. Valeev, and D. O. Kudryavtsev, pp. 127–132 (IP Reshenilenko P.A., Pyatigorsk, 2020).

  32. K. Sheth, M. Regan, J. L. Hinz, et al., Publ. Astron. Soc. Pacific 122 (898), 1397 (2010).

    Article  ADS  Google Scholar 

  33. O. K. Sil’chenko and V. L. Afanasiev, Astron. J. 127 (5), 2641 (2004).

    Article  ADS  Google Scholar 

  34. O. K. Sil’chenko and A. N. Burenkov, Astron. and Astrophys. 233, 314 (1990).

    ADS  Google Scholar 

  35. O. K. Sil’chenko, A. V. Moiseev, and O. V. Egorov, Astrophys. J. Suppl. 244 (1), article id. 6 (2019).

  36. L. S. Sparke, G. van Moorsel, P. Erwin, and E. M. H. Wehner, Astron. J. 135 (1), 99 (2008).

    Article  ADS  Google Scholar 

  37. L. J. Tacconi, R. Genzel, and A. Sternberg, Annual Rev. Astron. Astrophys. 58, 157 (2020).

    Article  ADS  Google Scholar 

  38. Y. Terashima, N. Iyomoto, L. C. Ho, and A. F. Ptak, Astrophys. J. Suppl. 139 (1), 1 (2002).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We obtained the observed data partially with the unique scientific installation—the Big Telescope Alt-azimuth of SAO RAS. Observations with the SAO RAS telescopes are supported by the Ministry of Science and Higher Education of the Russian Federation. Upgrading of the instruments is carried out within the framework of the “Science and Universities” national project. In our paper, we used the data from the NED Extragalactic Database (NASA/IPAC) operated by the Jet Propulsion Laboratory and the California Institute of Technology under the contract to NASA. We used the public data from the Hubble Space Telescope taken from the Hubble Legacy Archive (the collaboration of the Telescope Science Institute, the Space Telescope European Coordinating Facility, and the Canadian Astronomy Data Centre), the data from the GALEX space telescope (NASA Galaxy Evolution Explorer) operated by the California Institute of Technology under the NASA contract No. NAS5-98034. The GALEX data comes from the MAST (Mikulski Archive for Space Telescopes) public archive maintained by the NASA Space Office under grant NNX13AC07G and other grants. The optical photometry data were provided by the Legacy Survey service based on the BASS survey data. BASS is a key project of the Chinese Telescope Access Program (TAP) funded by the National Astronomical Observatories of China, the Chinese Academy of Sciences (the Strategic Priority Research Program “Emergence of Cosmological Structures”, grant No. XDB09000000), and the Special Fund for Astronomy from the Ministry of Finance. BASS is also supported by the External Cooperation Program of the Chinese Academy of Sciences (grant no. 114A11KYSB20160057) and the National Natural Science Foundation of China (grants no. 12120101003 and no. 11433005).

Funding

Spectroscopic observations and data analysis were supported by the grant from the Russian Science Foundation no. 22-12-00080. Photometric observations in narrow filters were supported by the RFBR grant no. 20-02-00080.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. K. Sil’chenko, A. V. Moiseev or A. S. Gusev.

Ethics declarations

The authors declare no conflict of interest regarding the publication of this paper.

Additional information

Translated by N. Oborina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil’chenko, O.K., Moiseev, A.V., Gusev, A.S. et al. Kinematics and Origin of Gas in the Disk Galaxy NGC 2655. Astrophys. Bull. 77, 397–406 (2022). https://doi.org/10.1134/S1990341322040137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341322040137

Keywords:

Navigation