Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 13, 2023

A new copper(II) complex containing triclopyr: one-pot crystallization, structure, conformation and Hirshfeld surface analyses

  • Jun-Xia Li EMAIL logo , Shuai Ge , Yi-Jing Lu , Ke-Ying Quan , Li-Bing Wu and Ai-Rong Wang EMAIL logo

Abstract

A new copper(II) complex [Cu(3,5,6-tcpa)(2,2-bipy)Cl] (1) has been obtained through the one-pot hydrothermal reaction of copper chloride dihydrate with triclopyr (systematic name 2-((3,5,6-trichloropyridin-2-yl)oxy)acetic acid, abbreviation 3,5,6-Htcpa) and 2,2′-bipyridine (2,2′-bipy) coligands. 1 has crystallized in triclinic crystal system, P 1 space group. The central copper(II) ion displayed a distorted square–pyramidal geometry and was connected by one chlorido co-ligand (Clˉ), one 3,5,6-tcpa anionic chelator and one chelating 2,2-bipy ligand to afford a mononuclear structure. 1 is further extended into a 3D network by the non-covalent interactions of H⋯Cl, H⋯O hydrogen bonds, aromatic π⋯π stacking together with Cl⋯Cl halogen bond interactions. The co-crystallization process, the crystal structure of 1 as well as the Hirshfeld surface analysis for 1 have been analyzed and described. In addition, the flexible conformation of phenoxy methylene group among 1, triclopyr acid and its previously reported co-crystallized compound also have been carefully compared and discussed.


Corresponding authors: Jun-Xia Li, Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province, 471934, P. R. China, E-mail: ; and Ai-Rong Wang, Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, Guangxi, 535011, P. R. China, E-mail:

  1. Author contributions: Jun-Xia Li: Conceptualization, Methodology, Software, Data curation, Writing – original draft, Writing – review & editing. Shuai Ge: Formal analysis. Yi-Jing Lu: Writing draft. Ke-Ying Quan: Software. Li-Bing Wu: Validation. Ai-Rong Wang: Resources, Review and editing.

  2. Research funding: This work was supported by Key Scientific Research Project of Colleges and Universities in Henan Province (No. 21A150036).

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest.

  4. Code availability: Not applicable.

  5. Supplementary material: The CCDC number 2057591 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

References

1. Cho, S., Kim, J., Jeon, Y., Kim, T. H. Crystal structure of triclopyr. Acta Crystallogr. 2014, E70, o940. https://doi.org/10.1107/S160053681401681X.Search in Google Scholar PubMed PubMed Central

2. Gibson, D. J., Shupert, L. A., Liu, X. Do no harm: efficacy of a single herbicide application to control an invasive shrub while minimizing collateral damage to native species. Plants 2019, 8, 426. https://doi.org/10.3390/plants8100426.Search in Google Scholar PubMed PubMed Central

3. Anésio, A. H. C., Santos, M. V., Silveira, R. R., Ferreira, E. A., Santos, J. B. D., Silva, L. D. D. Persistence of auxinic herbicides applied on pasture and toxicity for succeeding crops. An Acad. Bras. Ciências 2018, 90, 1717–1732. https://doi.org/10.1590/0001-3765201820170134.Search in Google Scholar PubMed

4. Stern, A. R., Ben-Arie, R. Pre-harvest drop control of ‘red delicious’ and ‘Jonathan’ apple (Malus domestica) as affected by the synthetic auxin 3,5,6-TPA. J. Hortic. Sci. Biotechnol. 2006, 81, 943–948. https://doi.org/10.1080/14620316.2006.11512180.Search in Google Scholar

5. Turner, M. A., Gulsby, W. D., Harper, C. A. Mixture of triclopyr and imazapyr more effective than triclopyr alone for hardwood forest stand improvement. For. Sci. 2021, 67, 43–48. https://doi.org/10.1093/forsci/fxaa039.Search in Google Scholar

6. Barlow, S. M., TerryGehen, C. S., Corvaro, M. Developmental toxicity studies on triclopyr acid, triclopyr butoxyethyl ester and triclopyr triethylamine salt in the rabbit. Food Chem. Toxicol. 2022, 161, 112845. https://doi.org/10.1016/j.fct.2022.112845.Search in Google Scholar PubMed

7. Barlow, S. M., Terry, C., Gehen, S., Corvaro, M. Reproductive and developmental evaluations of triclopyr acid, triclopyr butoxyethyl ester and triclopyr triethylamine salt in the rat. Food Chem. Toxicol. 2022, 161, 112806. https://doi.org/10.1016/j.fct.2021.112806.Search in Google Scholar PubMed

8. Tayeb, M. A., Ismail, B. S., Khairiatul-Mardiana, J. Runoff of the herbicides triclopyr and glufosinate ammonium from oil palm plantation soil. Environ. Moint. Assess. 2017, 189, 551. https://doi.org/10.1007/s10661-017-6236-4.Search in Google Scholar PubMed

9. Maddila, S., Rana, S., Pagadala, R., Maddila, S. N., Vasam, C., Jonnalagadda, S. B. Ozone-driven photocatalyzed degradation and mineralization of pesticide, Triclopyr by Au/TiO2. J. Environ. Sci. Health B 2015, 50, 571–583. https://doi.org/10.1080/03601234.2015.1028835.Search in Google Scholar PubMed

10. Pozdnyakov, I. P., Snytnikova, O. A., Yanshole, V. V., Fedunov, R. G., Grivin, V. P., Plyusnin, V. F. Direct UV photodegradation of herbicide triclopyr in aqueous solutions: a mechanistic study. Chemosphere 2022, 293, 133573. https://doi.org/10.1016/j.chemosphere.2022.133573.Search in Google Scholar PubMed

11. Isoardi, K. Z., Page, C. B., Roberts, M. S., Isbister, G. K. Life-threatening triclopyr poisoning due to diethylene glycol monoethyl ether solvent. Clin. Toxicol. 2021, 59, 61–64. https://doi.org/10.1080/15563650.2020.1757103.Search in Google Scholar PubMed

12. Pandey, A., Sharma, S., Jain, R. Voltammetric sensor for the monitoring of hazardous herbicide triclopyr (TCP). J. Hazard Mater. 2019, 367, 246–255. https://doi.org/10.1016/j.jhazmat.2018.12.083.Search in Google Scholar PubMed

13. Kennard, C. H. L., Smith, G. (2-Chlorophenoxy)acetic acid. Acta Crystallogr. B 1981, 37, 1456–1458. https://doi.org/10.1107/S0567740881006274.Search in Google Scholar

14. Kumar, S. V., Rao, L. M. (4-Chlorophenoxy)acetic acid. Acta Crystallogr. B 1982, 38, 2062–2064. https://doi.org/10.1107/S0567740882007961.Search in Google Scholar

15. Smith, G., Kennard, C. H. L., White, A. H. (3,4-Dichlorophenoxy)acetic acid. Acta Crystallogr. B 1981, 37, 1454–1455. https://doi.org/10.1107/S0567740881006262.Search in Google Scholar

16. Smith, G., Kennard, C. L., White, A. H. Herbicides. II. Crystal structure of 2,4,5-T (2,4,5-trichlorophenoxyacetic acid). Aust. J. Chem. 1976, 29, 2727–2730. https://doi.org/10.1071/CH9762727.Search in Google Scholar

17. Smith, G., Kennard, C. H. L., White, A. H. The structure of 2,4,6-trichlorophenoxyacetic acid. Cryst. Struct. Commun. 1977, 6, 49–52.Search in Google Scholar

18. Mirosław, B., Mahmoudi, G., Ferenc, W., Cristóvão, B., Osypiuk, D., Sarzyński, J., Głuchowska, H., Franconetti, A., Frontera, A. Halogen interactions in dinuclear copper(II) 2,4-dibromophenoxyacetate: crystal structure and quantum chemical calculations. J. Mol. Struct. 2020, 1202, 127227. https://doi.org/10.1016/j.molstruc.2019.127227.Search in Google Scholar

19. Xu, X. L., Hu, F., Shuai, Q. Facile synthesis, crystal structure and bioactivity evaluation of two novel barium complexes based on 2,4,6-trichlorophenoxyacetic acid and o-ferrocenylcarbonyl benzoic acid. New J. Chem. 2017, 41, 13319–13326. https://doi.org/10.1039/c7nj03046k.Search in Google Scholar

20. Sharma, R. P., Saini, A., Kumar, J., Kumar, S., Venugopalan, P., Ferretti, V. Coordination complexes of copper(II) with herbicide-trichlorophenoxyacetate: syntheses, characterization, single crystal X-ray structure and packing analyses of monomeric [Cu(γ-pic)3(2,4,5-trichlorophenoxyacetate)]·H2O, [trans-Cu(en)2(2,4,5-trichlorophenoxy acetate)2]·2H2O and dimeric Cu2(H2tea)2(2,4,5-trichlorophenoxyacetate)2]·2(H2O). Inorg. Chim. Acta 2017, 457, 59–68. https://doi.org/10.1016/j.ica.2016.12.008.Search in Google Scholar

21. Qin, L., Li, Y., Liang, F. L., Li, L. J., Lan, Y. W., Li, Z. Y., Lu, X. T., Yang, M. Q., Ma, D. Y. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098. https://doi.org/10.1016/j.micromeso.2022.112098.Search in Google Scholar

22. Li, J. X., Xiong, L. Y., Fu, L. L., Bo, W. B., Du, Z. X., Feng, X. Structural diversity of Mn(II) and Cu(II) complexes based on 2-carboxyphenoxyacetate linker: syntheses, conformation comparison and magnetic properties. J. Solid State Chem. 2022, 305, 122636. https://doi.org/10.1016/j.jssc.2021.122636.Search in Google Scholar

23. Hu, P., Xiao, F. P., Wang, H. K., Rogach, A. L. Dual-functional hosts derived from metal- organic frameworks reduce dissolution of polyselenides and inhibit dendrite growth in a sodium-selenium battery. Energy Storage Mater. 2022, 51, 249–258. https://doi.org/10.1016/j.ensm.2022.06.019.Search in Google Scholar

24. Zhou, Z., Wang, Y., Peng, F., Meng, F., Zha, J., Ma, L., Du, Y., Peng, N., Ma, L., Zhang, Q., Gu, L., Yin, W., Gu, Z., Tan, C. Intercalation-activated layered MoO3 nanobelts as biodegradable nanozymes for tumor-specific photo-enhanced catalytic therapy. Angew. Chem. Int. Ed. 2022, 61, e202115939. https://onlinelibrary.wiley.com/doi/10.1002/anie.202115939.10.1002/anie.202115939Search in Google Scholar PubMed

25. Li, R. F., Zhang, H., Hong, M. Z., Shi, J. G., Liu, X. F., Feng, X. Two Co(II)/Ni(II) complexes based on nitrogenous heterocyclic ligand as high-performance electrocatalyst for hydrogen evolution reaction. Dalton Trans. 2022, 51, 3970–3976. https://doi.org/10.1039/D1DT03814A.Search in Google Scholar

26. Li, J. X., Zhang, T., Chen, H. J., Du, Z. X. A (4,4)-connected zinc(II) coordination polymer constructed with the flexible 2-carboxy phenoxyacetate ligand: synthesis, conformation alteration and fluorescent properties. Z. Kristallogr. 2021, 236, 251–259. https://doi.org/10.1515/zkri-2021-2043.Search in Google Scholar

27. Dang, L. L., Li, T. T., Zhang, T. T., Zhao, Y., Chen, T., Gao, X., Ma, L. F., Jin, G. X. Highly selective synthesis and near-infrared photothermal conversion of metalla-Borromean ring and [2]catenane assemblies. Chem. Sci. 2022, 13, 5130–5140. https://doi.org/10.1039/d2sc00437b.Search in Google Scholar PubMed PubMed Central

28. Li, R. F., Wang, M. Z., Liu, X. F., Feng, X. Near-infrared luminescence and magnetism of several lanthanide polymers by biphenyl carboxylic acid ligand. Inorg. Chim. Acta 2022, 539, 121029. https://doi.org/10.1016/j.ica.2022.121029.Search in Google Scholar

29. Li, J. X., Du, Z. X., Xiong, L. Y., Fu, L. L., Bo, W. B. Supramolecular isomerism in two nickel(II) coordination polymers constructed with the flexible 2-carboxyphenoxyacetate linker: syntheses, structure analyses and magnetic properties. J. Solid State Chem. 2021, 293, 121799. https://doi.org/10.1016/j.jssc.2020.121799.Search in Google Scholar

30. Hu, P., Xiao, F. P., Wu, Y. F., Yang, X. M., Li, N., Wang, H. K., Jia, J. F. Covalent encapsulation of sulfur in a graphene/N-doped carbon host for enhanced sodium-sulfur batteries. Chem. Eng. J. 2022, 443, 136257. https://doi.org/10.1016/j.cej.2022.136257.Search in Google Scholar

31. Li, J. X., Xia, Y. Q., Cheng, L. M., Feng, X. One-pot hydrothermal synthesis of a mononuclear cobalt(II) complex and an organic-inorganic supramolecular adduct: structures, properties and hirshfeld surface analyses. J. Solid State Chem. 2022, 313, 123271. https://doi.org/10.1016/j.jssc.2022.123271.Search in Google Scholar

32. Li, J. X., Xiong, L. Y., Xu, X. J., Liu, C., Wang, Z. G. The synthesis, crystal structure and conformation analysis of triclopyr ethyl ester. Z. Kristallogr. 2022, 237, 385–391. https://doi.org/10.1515/zkri-2022-0047.Search in Google Scholar

33. Zhang, C. L., Li, Y. L., Wang, T., Ju, Z. M., Zheng, H. G., Ma, J. Three different metal-organic frameworks derived from a one-pot crystallization and their controllable synthesis. Chem. Commun. 2015, 51, 8338–8341. https://doi.org/10.1039/c5cc01072a.Search in Google Scholar PubMed

34. zaman, A., Mohammad, M., Khan, S., Dutta, B., Maity, S., Naaz, S., Alam, S. M., Ghosh, P., Islam, M. M., Mir, M. H. One-pot crystallization of two 1,4-cyclohexanedicarboxylate- based tetranuclear Cu(II) compounds and their DNA binding affinities. CrystEngComm 2021, 23, 1091–1098. https://doi.org/10.1039/D0CE01734E.Search in Google Scholar

35. Chen, J. X. One-pot solvothermal crystallization of two three-dimensional manganese 2,6-naphthalenedicarboxylates: secondary ligand-induced pseudopolymorphism. Chem. Lett. 2011, 40, 886–887. https://doi.org/10.1246/cl.2011.886.Search in Google Scholar

36. Li, J. X., Du, Z. X., Wang, J., Feng, X. Two mononuclear zinc(II) complexes constructed by two types of phenoxyacetic acid ligands: syntheses, crystal structures and fluorescence properties. Z. Naturforsch. 2019, 74b, 839–845. https://doi.org/10.1515/znb-2019-0147.Search in Google Scholar

37. Li, J. X., Du, Z. X. A binuclear cadmium(II) cluster based on π⋯π stacking and halogen⋯halogen interactions: synthesis, crystal analysis and fluorescent properties. J. Cluster Sci. 2020, 31, 507–511. https://doi.org/10.1007/s10876-019-01666-w.Search in Google Scholar

38. Li, J. X., Du, Z. X., Zhang, L. L., Liu, D. L., Pan, Q. Y. Doubly mononuclear cocrystal and oxalato-bridged binuclear copper compounds containing flexible 2-((3,5,6-trichloro pyridin-2-yl)oxy)acetate tectons: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 512, 119890. https://doi.org/10.1016/j.ica.2020.119890.Search in Google Scholar

39. Li, J. X., Du, Z. X., Pan, Q. Y., Zhang, L. L., Liu, D. L. The first 3,5,6-trichloro pyridine-2-oxyacetate bridged manganese coordination polymer with features of π⋯π stacking and halogen⋯halogen interactions: synthesis, crystal analysis and magnetic properties. Inorg. Chim. Acta 2020, 509, 119677. https://doi.org/10.1016/j.ica.2020.119677.Search in Google Scholar

40. Du, Z. X., Li, J. X., Bai, R. F. Crystal structure of catena-poly[(μ2-4,4′-bipyridine-κ2N:N′)- tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dicobalt(II)], C19H10Cl6CoN3O6. Z. Kristallogr. - New Cryst. Struct. 2020, 235, 15–17. https://doi.org/10.1515/ncrs-2019-0434.Search in Google Scholar

41. Du, Z. X., Li, J. X., Bai, R. F. The crystal structure of catena-poly [(μ2-4,4′-bipyridine- κ2N:N′)-tetrakis(μ2-2-((3,5,6-trichloropyridin-2-yl)oxy)acetato-κ2O:O′)dinickel(II)], C19H10Cl6N3NiO6. Z. Kristallogr. - New Cryst. Struct. 2020, 235, 55–56. https://doi.org/10.1515/ncrs-2019-0470.Search in Google Scholar

42. Li, J. X., Du, Z. X., Bai, R. F. Crystal structure of aqua-bis(5-bromo-6-methyl-picolinato- κ2N,O)zinc(II) dihydrate, C14H16Br2N2O7Zn. Z. Kristallogr. - New Cryst. Struct. 2020, 235, 63–65. https://doi.org/10.1515/ncrs-2019-0486.Search in Google Scholar

43. Du, Z. X., Li, J. X. Crystal structure of tetraaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy) acetato-κO)-nickel(II)—diaqua-bis(2-((3,5,6-trichloropyridin-2-yl)oxy)acetato)-nickel(II), C28H24Cl12N4Ni2O18. Z. Kristallogr. – New Cryst. Struct. 2020, 235, 881–883. https://doi.org/10.1515/ncrs-2020-0075.Search in Google Scholar

44. Li, J. X., Du, Z. X. The crystal structure of catena-poly[(μ2-4,4′-dipyridine-κ2N,N′)- bis(3,5,6-trichloropyridine-2-oxyacetato-κO)-bis(ethanol-κO)nickel(II)], C28H26Cl6N4NiO8. Z. Kristallogr. – New Cryst. Struct. 2020, 235, 887–890. https://doi.org/10.1515/ncrs-2020-0083.Search in Google Scholar

45. Li, J. X., Zhang, Y. H., Du, Z. X., Feng, X. One-pot solvothermal synthesis of mononuclear and oxalate-bridged binuclear nickel compounds: structural analyses, conformation alteration and magnetic properties. Inorg. Chim. Acta 2022, 530, 120697. https://doi.org/10.1016/j.ica.2021.120697.Search in Google Scholar

46. CrysAlis Pro . Rigaku Oxford Diffraction single crystal X-ray diffractometers; Rigaku Corporation: Wilmington, MA, 2016.Search in Google Scholar

47. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. Olex2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/S0021889808042726.Search in Google Scholar

48. Sheldrick, G. M. Shelxt – integrated space-group and crystal-structure determination. Acta Crystallogr. A 2015, 71, 3–8. https://doi.org/10.1107/S2053273314026370.Search in Google Scholar PubMed PubMed Central

49. Sheldrick, G. M., Crystal structure refinement with Shelxl, Acta Crystallogr. C 71 (2015) 3–8. https://doi.org/10.1107/S2053229614024218.Search in Google Scholar PubMed PubMed Central

50. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D., Spackman, M. A. Crystal Explorer 2.0; University of Western Australia: Perth, Australia, 2007.Search in Google Scholar

51. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G., Taylor, R. J. J. Chem. Soc., Perkin Trans. 1987, 2, S1–S19.10.1039/p298700000s1Search in Google Scholar

52. McKinnon, J. J., Spackman, M. A., Mitchell, A. S. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystallogr. B 2004, 60, 627–668. https://doi.org/10.1107/S0108768104020300.Search in Google Scholar PubMed

53. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl) -2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. https://doi.org/10.1039/DT9840001349.Search in Google Scholar

54. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. Chem. Rev. The Halogen Bond 2016, 116, 2478–2601. https://doi.org/10.1021/acs.chemrev.5b00484.Search in Google Scholar PubMed PubMed Central

55. Liu, C. Y., Lee, G. H., Wang, H. T. Synthesis, structural characterization and thermal stability of [Mn(3-bpd)2(NCS)2(H2O)2]·2H2O (1) and {[Mn(bpe)(NCS)2(H2O)2]·(3-bpd)·(bpe)·H2O}n (2) from one-pot crystallization. J. Chin. Chem. Soc. 2009, 56, 709–717. https://doi.org/10.1002/jccs.200900106.Search in Google Scholar

56. Zhong, K. L. Bis(1,10-phenanthroline-κ2N,N’)(sulfato-κ2O,O’)cobalt(II) propane-1,3-diol solvate. Acta Crystallogr. E. 2010, 66, m247. https://doi.org/10.1107/S1600536810003478.Search in Google Scholar PubMed PubMed Central

57. Du, Z. X., Li, J. X. The synthesis, structure and magnetic properties of a mononuclear cobalt compound with dipyrimidine sulfane ligand derived from 2-thio-barbituric acid. Inorg. Chim. Acta 2015, 436, 159–162. https://doi.org/10.1016/j.ica.2015.07.036.Search in Google Scholar

58. Liu, C. M., Zhang, D. Q., Hao, X., Zhu, D. B. Simultaneous assembly of mononuclear and dinuclear dysprosium(III) complexes behaving as single-molecule magnets in a one-pot hydrothermal synthesis. Sci. China Chem. 2017, 60, 358–365. https://doi.org/10.1007/s11426-016-0359-x.Search in Google Scholar

59. Du, Z. X., Li, J. X., Liu, S. J., Wang, Z. Q., Pan, Q. J. The syntheses, structures, and magnetic properties of two mononuclear manganese(II) complexes involving in situ hydrothermal decarboxylation. Z. Naturforsch. 2020, 75b, 567–575. https://doi.org/10.1515/znb-2020-0036.Search in Google Scholar

60. Ay, B., Sahin, O., Yildiz, E. One-pot hydrothermal synthesis of 1D copper (II) coordination polymers involving in-situ decarboxylation. Solid State Sci. 2019, 96, 105958. https://doi.org/10.1016/j.solidstatesciences.2019.105958.Search in Google Scholar

61. Zhang, X. M. Hydro(solvo)thermal in situ ligand syntheses. Coord. Chem. Rev. 2005, 249, 1201–1219. https://doi.org/10.1016/j.ccr.2005.01.004.Search in Google Scholar

62. Liang, Y. J., Feng, G., Zhang, X., Li, J. X., Jiang, Y. Bis(pyridyl) ancillary ligands and pyrazine sulfonic acid in the synthesis of two Ag(I) supramolecular structures and fluorescent properties of the latter. J. Struct. Chem. 2021, 62, 300–308; https://doi.org/10.1134/s0022476621020153.Search in Google Scholar

63. Zheng, Z., Xu, P., Jiang, Y., Liang, Y. J., Li, J. X. “Soft–hard” strategy to construct a pyrazine sulfonic acid copper(II) supramolecular structure and a study of its fluorescent property. J. Struct. Chem. 2021, 62, 292–299; https://doi.org/10.1134/s0022476621020141.Search in Google Scholar

64. Hu, H., Quan, J., Tan, Z., Fu, J. H., Liang, Y. J., Li, J. X. Synthesis and properties of dimercury(I) crystal network constructed with functionalized pyrazine sulfonate and nitrate linkers. Russ. J. Gen. Chem. 2021, 91, 910–914; https://doi.org/10.1134/S1070363221050224.Search in Google Scholar

65. Liang, Y. J., Hu, D., Zhang, L., Jiang, Y., Li, J. X. The synthesis and properties of a sodium supramolecular crystal network constructed with functional pyrazine sulfonic acid. J. Struct. Chem. 2021, 62, 1801–1809; https://doi.org/10.1134/S0022476621110172.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zkri-2022-0063).


Received: 2022-11-25
Accepted: 2023-01-31
Published Online: 2023-02-13
Published in Print: 2023-03-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2022-0063/html
Scroll to top button