Skip to main content
Log in

Clusteroluminescence in Organic, Inorganic, and Hybrid Systems: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The current research on clusteroluminescence of nonconventional luminescent materials, which is associated with the occurrence of through-space conjugation due to the overlapping of electronic orbitals of atoms in aggregates formed at high concentrations of substances in solutions or solid states, is considered. It is shown that this phenomenon is typical for a wide range of substances, in particular, various low molecular weight organic compounds, polymers containing heteroatoms, inorganic substances and some hybrid (composite) materials. The possible practical use of clusteroluminogens in versatile fields is demonstrated, especially ecosystem monitoring, encryption materials, optoelectronics, medical and biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© Springer Nature, 2022.

Fig. 2

© The Royal Society of Chemistry, 2021.

Fig. 3

© Elsevier, 2022.

Fig. 4

© Springer Nature, 2022.

Fig. 5

© Wiley-VCH GmbH, 2020.

Fig. 6

© American Chemical Society, 2004 and from [68] with permission of © Springer Nature, 2015.

Fig. 7

© American Chemical Society, 2019.

Fig. 8

© Springer Nature, 2020.

Fig. 9

© Wiley-VCH, 2020.

Fig. 10

© Elsevier, 2022.

Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Studzian, L. Pulaski, D. A. Tomalia, and B. Klajnert-Maculewicz, J. Phys. Chem. C., 123, No. 29, 18007-18016 (2019), https://doi.org/10.1021/acs.jpcc.9b02725.

    Article  CAS  Google Scholar 

  2. D. A. Tomalia, B. Klajnert-Maculewicz, K. A.-M. Johnson, et al., Prog. Polym. Sci., 90, 35-117 (2019), https://doi.org/10.1016/j.progpolymsci.2018.09.004.

    Article  CAS  Google Scholar 

  3. Y. Lai, T. Zhu, T. Geng, et al., Small, 16, No. 49, 2005035 (2020), https://doi.org/10.1002/smll.202005035.

    Article  CAS  Google Scholar 

  4. J. Long, J. Shan, Y. Zhao, et al., Chem. Asian J., 16, No. 17, 2426-2430 (2021), https://doi.org/10.1002/asia.202100668.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Zhang, R. Qi, L. Cao, et al., J. Lumin., 239, 118401 (2021), https://doi.org/10.1016/j.jlumin.2021.118401.

  6. H. Wang, S. Lan, Y. Zhang, et al., Macromol. Chem. Phys., 222, No. 13, 2100070 (2021), https://doi.org/10.1002/macp.202100070.

    Article  CAS  Google Scholar 

  7. S. Tang, T. Yang, Z. Zhao, et al., Chem. Soc. Rev., 50, No. 22, 12616-12655 (2021), https://doi.org/10.1039/D0CS01087A.

    Article  CAS  PubMed  Google Scholar 

  8. W. Zhang, Y. M.-X. Yang, et al., Microchem. J., 178, 107364 (2022), https://doi.org/10.1016/j.microc.2022.107364.

  9. F. Wurthner, Angew. Chem. Int. Ed., 59, No. 34, 14192-14196 (2020), https://doi.org/10.1002/anie.202007525.

    Article  CAS  Google Scholar 

  10. Y. Z. Wang, B. Xin, X. H. Chen, et al., Macromol. Rapid. Commun., 39, No. 21, 1800528 (2018), https://doi.org/10.1002/marc.201800528.

    Article  CAS  Google Scholar 

  11. R. Hu, G. Zhang, A. Qin, and B. Z. Tang, Pure Appl. Chem., 93, No. 12, 1383-1402 (2021), https://doi.org/10.1515/pac-2021-0503.

    Article  CAS  Google Scholar 

  12. J. Zhang, X. Zhao, H. Shen, et al., Adv. Photonics, 4, No. 1, 014001 (2021), https://doi.org/10.1117/1.AP.4.1.014001.

  13. A. Sanchez-Ruiz, A. Sousa-Herves, J. T. Barrilero, et al., Polymers, 13, No. 2, 213 (2021), https://doi.org/10.3390/polym13020213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. C. B. Rodrigues and J. S. Seixas de Melo, Top. Curr. Chem., 379, No. 3, 15 (2021), https://doi.org/10.1007/s41061-021-00327-9.

    Article  CAS  Google Scholar 

  15. J. Mei, Y. Hong, J. W. Y. Lam, et al., Adv. Mater., 26, No. 31, 5429-5479 (2014), https://doi.org/10.1002/adma.201401356.

    Article  CAS  PubMed  Google Scholar 

  16. B. Z. Tang, Z. Zhao, H. Zhang, and J. W. Y. Lam, Angew. Chem., 132, No. 25, 9972-9993 (2020), https://doi.org/10.1002/ange.201916729.

    Article  Google Scholar 

  17. B.-R. Gao, H.-Y. Wang, Y.-W. Hao, et al., J. Phys. Chem. B., 114, No. 1, 128-134 (2009), https://doi.org/10.1021/jp909063d.

    Article  CAS  Google Scholar 

  18. S. Sasaki, G. P. C. Drummen, and G. I. Konishi, J. Mater. Chem. C., 4, No. 14, 2731-2743 (2016), https://doi.org/10.1039/C5TC03933A.

    Article  CAS  Google Scholar 

  19. J. Zhang, B. Xu, J. Chen, et al., J. Phys. Chem. C., 117, No. 44, 23117-23125 (2013), https://doi.org/10.1021/jp405664m.

    Article  CAS  Google Scholar 

  20. V. S. Padalkar and S. Seki, Chem. Soc. Rev., 45, N 1, 169-202 (2016), https://doi.org/10.1039/c5cs00543d.

    Article  CAS  PubMed  Google Scholar 

  21. J. Wang, J. Mei, W. Yuan, et al., J. Mater. Chem., 21, No. 12, 4056-4059 (2011), https://doi.org/10.1039/C0JM04100A.

    Article  CAS  Google Scholar 

  22. F. Wurthner, T. E. Kaiser, and C. R. Saha-Moller, Angew. Chem., 123, No. 15, 3436-3473 (2011), https://doi.org/10.1002/ange.201002307.

    Article  Google Scholar 

  23. C.-J. Zhang, G. Feng, S. Xu, et al., Angew. Chem. Int. Ed., 55, No. 21, 6192-6196 (2016), https://doi.org/10.1002/anie.201600244 2016-6192.

    Article  CAS  Google Scholar 

  24. H. Zhang and B. Z. Tang, J. Am. Chem. Soc. Au., 1, No. 11, 1805-1814 (2021), https://doi.org/10.1021/jacsau.1c00311.

    Article  CAS  Google Scholar 

  25. Z. Wang, H. Zhang, S. Li, et al., Top. Curr. Chem., 379, 14 (2021), https://doi.org/10.1007/s41061-021-00326-w.

    Article  CAS  Google Scholar 

  26. X. Chen, Y. Wang, Y. Zhang, and W. Yuan, Progr. Chem., 31, No. 11, 1560-1575 (2019), https://doi.org/10.7536/PC190812.

    Article  CAS  Google Scholar 

  27. P. Liao, J. Huang, Y. Yan, and B. Z. Tang, Mater. Chem. Front., 5, No. 18, 6693-6717 (2021), https://doi.org/10.1039/D1QM00808K.

    Article  CAS  Google Scholar 

  28. H. Zhang and B. Z. Tang, Handbook of Aggregation-Induced Emission, Y. Tang and B. Z. Tang (eds.), John Wiley & Sons Ltd, Vol. 1 (2022), pp. 153-175, https://doi.org/10.1002/9781119643098.ch5.

  29. H. Zhang, Z. Zhao, P. R. McGonigal, et al., Mater. Today, 32, 275-292 (2020), https://doi.org/10.1016/j.mattod.2019.08.010.

    Article  CAS  Google Scholar 

  30. Y. Tang and B. Z. Tang (eds.) Handbook of Aggregation-Induced Emission, John Wiley & Sons Ltd (2022), https://doi.org/10.1002/9781119643098.

  31. Y. Q. Dong, Y. Liu, M. Liu, et al., Handbook of Aggregation-Induced Emission, Y. Tang and B. Z. Tang (eds.), John Wiley & Sons Ltd, Vol. 1 (2022), pp. 177-201, https://doi.org/10.1002/9781119643098.ch6.

  32. H. Zhang, Aggregation-Induced Emission: Mechanistic Study, Clusteroluminescence and Spontaneous Resolution. Ph.D. Thesis, Hong Kong University of Science and Technology (2019).

  33. H. Zhang, X. Zheng, N. Xie, et al., J. Am. Chem. Soc., 139, No. 45, 16264-16272 (2017), https://doi.org/10.1021/jacs.7b08592.

    Article  CAS  PubMed  Google Scholar 

  34. J. Zhang, L. Hu, K. Zhang, et al., J. Am. Chem. Soc., 143, No. 25, 9565-9574 (2021), https://doi.org/10.1021/jacs.1c03882.

    Article  CAS  PubMed  Google Scholar 

  35. H. Zhang, L. Du, L. Wang, et al., J. Phys. Chem. Lett., 10, No. 22, 7077-7085 (2019), https://doi.org/10.1021/acs.jpclett.9b02752.

    Article  CAS  PubMed  Google Scholar 

  36. J. Zhang, P. Alam, S. Zhang, et al., Nat. Commun., 13, 3492 (2022), https://doi.org/10.1038/s41467-022-31184-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. L. Viglianti, N. L. C. Leung, N. Xie, et al., Chem. Sci., 8, No. 4, 2629-2639 (2017), https://doi.org/10.1039/c6sc05192h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. R. D. Crocker, D. P. Pace, B. Zhang, et al., J. Am. Chem. Soc., 143, No. 48, 20384-203948 (2021), https://doi.org/10.1021/jacs.1c10038.

    Article  CAS  PubMed  Google Scholar 

  39. X. Jiang, W. Tao, C. Chen, et al., Chem. Sci., 12, No. 48, 15928-15934 (2021), https://doi.org/10.1039/D1SC05426K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Q. Zhou, T. Yang, Z. Zhong, et al., Chem. Sci., 11, No. 11, 2926-2933 (2020), https://doi.org/10.1039/C9SC06518K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. K. L. Wang, Z. Xin, D. L. Chen, et al., Macromol. Rapid. Commun., 40, No. 1, 1800528 (2019), https://doi.org/10.1002/marc.205483189.

    Article  Google Scholar 

  42. L. Xu, X. Zhang, S. Zhang, and X. Cui, Dyes Pigm., 201, 110259 (2022), https://doi.org/10.1016/j.dyepig.2022.110259.

  43. T. Yang, Y. Wang, J. Duan, et al., Research, 9757460 (2021), https://doi.org/10.34133/2021/9757460.

  44. Y. Ma, H. Zhang, K. Wang, et al., Spectrochim. Acta. A., 254, 119604 (2021), https://doi.org/10.1016/j.saa.2021.119604.

  45. K.-N. Wei, Q.-J. Zhang, Y.-Q. Zhang, et al., Spectrochim. Acta. A., 272, 121015 (2022), https://doi.org/10.1016/j.saa.2022.121015.

  46. W. Zhang, Y. Luo, M.-X. Yang, et al., Microchem. J., 178, 107364 (2022), https://doi.org/10.1016/j.microc.2022.107364.

  47. H. S. Kei, Clusterization-Induced Emission by Non-Conventional Luminescent Molecules, Thesis (M. Phil. Chemistry), Hong Kong University of Science and Technology (2021), https://hdl.handle.net/1783.1/116427.

  48. J. Zhang, J. Zhang, H. Zhang, et al., Adv. Sci., 8, No. 7, 2004299 (2021), https://doi.org/10.1002/advs.202004299.

    Article  CAS  Google Scholar 

  49. T. Zhu, T. Yang, Q. Zhang, and W. Z. Yuan, Nat. Commun., 13, 2658 (2022), https://doi.org/10.1038/s41467-022-30368-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. S. Zheng, T. Zhu, Y. Wang, et al., Angew. Chem. Int. Ed., 59, No. 25, 10018-10022 (2020), https://doi.org/10.1002/anie.202000655.

    Article  CAS  Google Scholar 

  51. X. Chen, W. Luo, H. Ma, et al. Sci. China Chem., 61, No. 3, 351-359 (2018), https://doi.org/10.1007/s11426-017-9114-4.

    Article  CAS  Google Scholar 

  52. R. Ravanfar, C. J. Bayles, and A. Abbaspourrad, Cryst. Growth Des., 20, No. 3, 1673-1680 (2020), https://doi.org/10.1021/acs.cgd.9b01430.

    Article  CAS  Google Scholar 

  53. H. Li, J. Gu, Z. Zijie Wang, et al., Nat. Commun., 13, 429 (2022), https://doi.org/10.1038/s41467-022-28070-9.

  54. B. Chu, H. Zhang, L. Hu, et al., Angew. Chem., 61, No. 6, e202114117 (2022), https://doi.org/10.1002/anie.202114117.

  55. B. Chu, H. Zhang, K. Chen, et al., J. Am. Chem. Soc., 144, No. 33, 15286-1529 (2022), https://doi.org/10.1021/jacs.2c05948.

    Article  CAS  PubMed  Google Scholar 

  56. Z. Zhang, Z. Xiong, B. Chu, et al., Aggregate, e278 (2022), https://doi.org/10.1002/agt2.278.

  57. X. Zhou, W. Luo, H. Nie, et al., J. Mater. Chem C., 5, No. 19, 4775-4779 (2017), https://doi.org/10.1039/c7tc00868f.

    Article  CAS  Google Scholar 

  58. C. Du, H. Chu, Z. Xiao, et al., Macromolecules, 53, No. 21, 9337-9344 (2020), https://doi.org/10.1021/acs.macromol.0c01792.

    Article  CAS  Google Scholar 

  59. L. Xu, S. Zhong, Q. Meng, et al., Dyes and Pigments, 194, 109558 (2021), https://doi.org/10.1016/j.dyepig.2021.109558.

  60. L. Xu, X. Liang, S. Zhong, et al., Colloids and Surfaces B., 206, 111961 (2021), https://doi.org/10.1016/j.colsurfb.2021.111961.

  61. X. Dou, Q. Zhou, X. Chen, et al., Biomacromolecules, 19, No. 6, 2014-2022 (2018), https://doi.org/10.1021/acs.biomac.8b00123.

    Article  CAS  PubMed  Google Scholar 

  62. M. Li, X. Li, X. An, et al., Front. Chem., 7, 447 (2019), https://doi.org/10.3389/fchem.2019.00447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Q. Zhou, M. Liu, C. Li, et al., Front. Chem., 10, 805252 (2022), https://doi.org/10.3389/fchem.2022.805252.

  64. Q. Zhou, B. Cao, C. Zhu, et al., Small, 12, No. 47, 6586-6592 (2016), https://doi.org/10.1002/smll.201601545-92.

    Article  CAS  PubMed  Google Scholar 

  65. C. L. Larson and S. A. Tucker, Appl. Spectrosc., 55, No. 6, 679-683 (2001), https://opg.optica.org/as/abstract.cfm?URI=as-55-6-679.

  66. Z. Zhang, H. Zhang, M. Kang, et al., Sci. Chin. Chem., 64, No. 11, 1990-1998 (2021), https://doi.org/10.1007/s11426-021-1067-3.

    Article  CAS  Google Scholar 

  67. D. Wang and T. Imae, J. Am. Chem. Soc., 126, No. 41, 13204-13205 (2004), https://doi.org/10.1021/ja0454992.

    Article  CAS  PubMed  Google Scholar 

  68. R. B. Wang, W. Z. Yuan, and X. Y. Zhu, Chin. J. Polym. Sci., 33, 680-687 (2015), https://doi.org/10.1007/s10118-015-1635-x.

    Article  CAS  Google Scholar 

  69. C. S. Camacho, M. Urgelles, H. Tomas, et al., J. Mater. Chem. B., 8, No. 45, 10314-10326 (2020), https://doi.org/10.1039/D0TB01871F.

    Article  CAS  PubMed  Google Scholar 

  70. D. E. Igartua, D. E. Ybarra, D. M. Cabezas, et al., J. Appl. Polymer Sci., 138, No. 29, 50700 (2021), https://doi.org/10.1002/app.50700.

    Article  CAS  Google Scholar 

  71. M. Studzian, P. Dzialak, L. Pulaski, et al., Molecules, 25, 4406 (2020), https://doi.org/10.3390/molecules25194406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. X. Chen, T. Yang, J. Lei, et al., J. Phys. Chem. B., 124, No. 40, 8928-8936 (2020), https://doi.org/10.1021/acs.jpcb.0c06606.

    Article  CAS  PubMed  Google Scholar 

  73. B. Liu, Z. Chen, B. Chu, et al., Adv. Photonics Res., 2, No. 5, 2000161 (2021), https://doi.org/10.1002/adpr.202000161.

    Article  CAS  Google Scholar 

  74. L. Dong, W. Fu, P. Liu, et al., Macromolecules, 53, No. 3, 1054-1062 (2020), https://doi.org/10.1021/acs.macromol.9b02192.

    Article  CAS  Google Scholar 

  75. Z. Zhao, X. Chen, Q. Wang, et al., Polym. Chem., 10, No. 26, 3639-3646 (2019), https://doi.org/10.1039/C9PY00519F.

    Article  CAS  Google Scholar 

  76. F. Kausar, T. Yang, Z. Zhao, et al., Chem. Res. Chin. Univers., 37, 177-182 (2021), https://doi.org/10.1007/s40242-021-0414-1.

    Article  CAS  Google Scholar 

  77. Q. Zhou, J. Cui, T. Yang, et al., Sci. Chin. Chem., 63, No. 6, 833-840 (2020), https://doi.org/10.1007/s11426-019-9704-y.

    Article  CAS  Google Scholar 

  78. B. Han, Q. Yan, Q. Liu, et al., Sep. Purif. Technol., 292, 121023 (2022), https://doi.org/10.1016/j.seppur.2022.121023.

  79. L. Guo, L. Yan, Y. He, et al., Angew. Chem., 61, No. 29, e202204383 (2022), https://doi.org/10.1002/anie.202204383.

  80. P. Liu, W. Fu, P. Verwilst, et al., Angew. Chem., 132, No. 22, 8513-8517 (2020), https://doi.org/10.1002/ange.201916524.

    Article  Google Scholar 

  81. Q. Qi, Z. Xiao, Y. Wang, et al., Polymers, 14, 1919 (2022), https://doi.org/10.3390/polym14091919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. L. Bai, H. Yan, T. Bai, et al., Biomacromolecules, 20, No. 11, 4230-4240 (2019), https://doi.org/10.1021/acs.biomac.9b01217.

    Article  CAS  PubMed  Google Scholar 

  83. T. Yang, Nanoscale, 13, No. 35, 15058-15066 (2021), https://doi.org/10.1039/D1NR02389F.

    Article  CAS  PubMed  Google Scholar 

  84. T.-Q. Yang, Bo-Peng, J.-F. Zhou, et al., Chem. Rxiv., https://doi.org/10.26434/chemrxiv.12927452.v1.

  85. J. Zhou, T. Yang, B. Peng, et al., ACS Phys. Chem. Au., 2, No. 1, 47-58 (2022), https://doi.org/10.1021/acsphyschemau.1c00020.

    Article  CAS  PubMed  Google Scholar 

  86. Z. Zhao, H. Ma, S. Tang, et al., Cell Reports Phys. Sci., 3, No. 2, 100593 (2022), https://doi.org/10.1016/j.xcrp.2021.100593.

  87. S. Zheng, T. Hu, X. Bin, et al., ChemPhysChem., 21, No. 1, 36-42 (2020), https://doi.org/10.1002/cphc.201901024.

    Article  CAS  PubMed  Google Scholar 

  88. P. Sun, Z. Wang, D. Sun, et al., J. Colloid and Interface Sci., 567, 235-242 (2020), https://doi.org/10.1016/j.jcis.2020.02.016.

    Article  CAS  Google Scholar 

  89. Z. Xie, P. Sun, Z. Wang, et al., Angew. Chem., 132, No. 25, 10008-10013 (2020), https://doi.org/10.1002/ange.201912201.

    Article  Google Scholar 

  90. Y. Zhang, M. Lv, P. Gao, et al., Sens. Actuators, B., 326, 129009 (2021), https://doi.org/10.1016/j.snb.2020.129009.

  91. S. Chakraborty, D. Bain, S. Maity, et al., J. Phys. Chem. C., 126, No. 5, 2896-2904 (2022), https://doi.org/10.1021/acs.jpcc.1c10237.

    Article  CAS  Google Scholar 

  92. D. Bain, S. Maity, and A. Patra, Chem. Commun., 56, No. 65, 9292-9295 (2020), https://doi.org/10.1039/D0CC03565C.

    Article  CAS  Google Scholar 

  93. T. Yang, S. Dai, S. Yang, et al., J. Phys. Chem. Lett., 8, No. 17, 3980-3985 (2017), https://doi.org/10.1021/acs.jpclett.7b01736.

    Article  CAS  PubMed  Google Scholar 

  94. L. Xu, Y. Cao, S. Hong, et al., ACS Appl. Nano Mater., 1, No. 12, 6641-6648 (2018), https://doi.org/10.1021/acsanm.8b01435.

    Article  CAS  Google Scholar 

  95. M. Wu, J. Zhao, D. M. Chevrier, et al., J. Phys. Chem. C., 123, No. 10, 6010-6017 (2019), https://doi.org/10.1021/acs.jpcc.8b11716.

    Article  CAS  Google Scholar 

  96. Z. Luo, X. Yuan, Y. Yu, et al., J. Am. Chem. Soc., 134, No. 40, 16662-16670 (2012), https://doi.org/10.1021/ja306199p.

    Article  CAS  PubMed  Google Scholar 

  97. Z. Wu, Q. Yao, O. J. H. Chai, et al., Angew. Chem., 132, No. 25, 10020-10025 (2020), https://doi.org/10.1002/ange.201916675.

    Article  Google Scholar 

  98. Z. Wu, Q. Yao, O. J. H. Chai, et al., Angew. Chem. Int. Ed., 59, No. 25, 9934-9939 (2020), https://doi.org/10.1002/anie.201916675.

    Article  CAS  Google Scholar 

  99. Y. Wang, B. Shen, Z. Zhang, et al., Biomater. Adv., 137, 212841 (2022), https://doi.org/10.1016/j.bioadv.2022.212841.

  100. X. Ran, Z. Wang, F. Pu, et al., Mater. Horizons, 8, No. 6, 1769-1775 (2021), https://doi.org/10.1039/D0MH01875A.

    Article  CAS  Google Scholar 

  101. J.-H. Xue, K.-P. Xiao, Y.-S. Wang, et al., Colloids and Surfaces B., 189, 110873 (2020), https://doi.org/10.1016/j.colsurfb.2020.110873.

  102. Y. Wei, W. Luan, F. Gao, and X. Hou, Part. Part. Syst. Charact., 36, No. 12, 1900314 (2019), https://doi.org/10.1002/ppsc.201900314.

    Article  CAS  Google Scholar 

  103. M. Sugiuchi, J. Maeba, N. Okubo, et al., J. Am. Chem. Soc., 139, No. 49, 17731-17734 (2017), https://doi.org/10.1021/jacs.7b10201.

    Article  CAS  PubMed  Google Scholar 

  104. X. Zhao, P. Alam, J. Zhang, et al., CCS Chem., 3, No. 8, 3039-3049 (2021), https://doi.org/10.31635/ccschem.021.202101392.

  105. Z. Zhao, Z. Wang, J. Tavakoli, et al., Aggregate, 2, No. 2, e36 (2021), https://doi.org/10.1002/agt2.36.

  106. J.-J. Fang, Y.-L. Shen, Z. Liu, et al., Inorg. Chem., 60, No. 17, 13493-13499 (2021), https://doi.org/10.1021/acs.inorgchem.1c01829.

    Article  CAS  PubMed  Google Scholar 

  107. Z. Wu, J. Liu, Y. Gao, et al., J. Am. Chem. Soc., 137, No. 40, 12906-12913 (2015), https://doi.org/10.1021/jacs.5b06550.

    Article  CAS  PubMed  Google Scholar 

  108. S. Yang, G. Li, C. Song, et al., Colloids Surf. A., 606, 125514 (2020), https://doi.org/10.1016/j.colsurfa.2020.125514.

  109. S. Maity, D. Bain, and A. Patra, J. Phys. Chem. C., 123, No. 4, 2506-2515 (2019), https://doi.org/10.1021/acs.jpcc.8b09467.

    Article  CAS  Google Scholar 

  110. Z. Lu, Y.-J. Yang, W.-X. Ni, et al., Chem. Sci., 12, No. 2, 702-708 (2021), https://doi.org/10.1039/D0SC05095D.

    Article  CAS  Google Scholar 

  111. H. Li, C. Zhou, E. Wang, et al., Chem. Commun., 58, No. 33, 5092-5095 (2022), https://doi.org/10.1039/D2CC00987K.

    Article  CAS  Google Scholar 

  112. P. Wang, C. Liu, W. Tang, et al., ACS Appl. Mater. Interfaces, 11, No. 21, 19301-19307 (2019), https://doi.org/10.1021/acsami.8b22605.

    Article  CAS  PubMed  Google Scholar 

  113. C. Zhang, H. Wang, X. Lan, et al., J. Phys. Chem. Lett., 12, No. 5, 1413-1420 (2021), https://doi.org/10.1021/acs.jpclett.0c03614.

    Article  CAS  PubMed  Google Scholar 

  114. S. Yan, Z. Gao, H. Yan, et al., J. Mater. Chem. C., 8, No. 41, 14587-14594 (2020), https://doi.org/10.1039/d0tc03619.

    Article  CAS  Google Scholar 

  115. L. Du, B. Jiang, X. Chen, et al., Chin. J. Polym. Sci., 37, No. 4, 409-415 (2019), https://doi.org/10.1007/s10118-019-2215-2.

    Article  CAS  Google Scholar 

  116. S. Pan, W. Liu, J. Tang, et al., J. Mater. Chem. B., 6, No. 23, 3927-3933 (2018), https://doi.org/10.1039/C8TB00463C.

    Article  CAS  PubMed  Google Scholar 

  117. W.-F. Lai, Mater. Today Chem., 23, 100712 (2022), https://doi.org/10.1016/j.mtchem.2021.100712.

  118. Y. Ren, W. Dai, S. Guo, et al., J. Am. Chem. Soc., 144, No. 3, 1361-1369 (2022), https://doi.org/10.1021/jacs.1c11607.

    Article  CAS  PubMed  Google Scholar 

  119. X. Xu, F. He, H. Yan, et al., ACS Appl. Mater. Interfaces, 13, No. 4, 51695-51707 (2021), https://doi.org/10.1021/acsami.1c14677.

    Article  CAS  PubMed  Google Scholar 

  120. L. Xu, X. Zhang, S. Zhong, et al., Colloids Surf. A., 647, 129087 (2022), https://doi.org/10.1016/j.colsurfa.2022.129087.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Sakhno.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 5, pp. 267-294 September-October 2022

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhno, T.V., Sakhno, Y. & Kuchmiy, S.Y. Clusteroluminescence in Organic, Inorganic, and Hybrid Systems: A Review. Theor Exp Chem 58, 297–327 (2022). https://doi.org/10.1007/s11237-023-09747-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09747-8

Keywords

Navigation