Skip to main content
Log in

Dispersion of unfractionated microalgae in various polymers and its influence on rheological and mechanical properties

  • Original Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

This study investigates unfractionated microalgae (Chlorella sp. HS2 (HS2)) as a new resource of biomass to develop microalgae-based bioplastic materials. For the fabrication of microalgae-based bioplastics, HS2 is melt-compounded with various polymers with different solubility. In addition, lipid-extracted HS2 (HS2-LE) is tested to compare the dispersion of unfractionated microalgae. Dispersion of HS2 in the polymer is assessed with morphological observations and image analysis, further evaluated based on mechanical, thermal, FT-IR spectroscopic, and rheological measurements. HS2 disperses in polymer with broad size distribution and forms large millimeter-sized agglomerates throughout the composite regardless of type of polymers. Meanwhile, size distribution of HS2 aggregates is shifting to smaller region at mixing condition realizing strong stress transfer. For poly(ethylene–vinyl acetate) (EVA)/HS2 showing smaller size distribution, the addition of 10% HS2 increases elongation at break of EVA. Moreover, lipid-extracted HS2 (HS2-LE) increases further ductility and strength of EVA composite due to better dispersion of HS2-LE. This preliminary study to screen out of several polymers to develop microalgae-based bioplastics has brought out a potential of HS2 for bioplastic application.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [JS Hong], upon reasonable request.

References

  1. MacArthur E (2017) Beyond plastic waste. Science 358:843. https://doi.org/10.1126/science.aao6749

    Article  CAS  Google Scholar 

  2. Halley PJ, Dorgan JR (2011) Next-generation biopolymers: advanced functionality and improved sustainability. MRS Bull 36:687–691. https://doi.org/10.1557/mrs.2011.180

    Article  CAS  Google Scholar 

  3. Ren X (2003) Biodegradable plastics: a solution or a challenge? J Clean Prod 11:27–40. https://doi.org/10.1016/S0959-6526(02)00020-3

    Article  Google Scholar 

  4. Cui X, Honda T, Asoh TA, Uyama H Cellulose modified by citric acid reinforced polypropylene resin as fillers. Carbohydrate Polymers 2020, 230: 115662, https://doi.org/10.1016/j.carbpol.2019.115662.

  5. Rocha DB, Souza AG, Szostak M, Rosa DdS. Polylactic acid/Lignocellulosic residue composites compatibilized through a starch coating. Polymer Composites 2020, 41: 3250–3259, https://doi.org/10.1002/pc.25616.

  6. Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK (2020) Nanocellulose reinforced thermoplastic starch (TPS), Polylactic Acid (PLA), and polybutylene succinate (PBS) for food packaging applications. Front Chem 8:213. https://doi.org/10.3389/fchem.2020.00213

    Article  CAS  Google Scholar 

  7. Rahman A, Miller CD Microalgae as a Source of Bioplastics. In Algal Green Chemistry; Rastogi R.P., Madamwar D., Pandey A.; 2017; pp. 121–138.

  8. Zeller MA, Hunt R, Jones A, Sharma S (2013) Bioplastics and their thermoplastic blends fromSpirulinaandChlorellamicroalgae. J Appl Polym Sci 130:3263–3275. https://doi.org/10.1002/app.39559

    Article  CAS  Google Scholar 

  9. Figueira CE, Moreira PF Jr, Giudici R (2015) Thermogravimetric analysis of the gasification of microalgae Chlorella vulgaris. Biores Technol 198:717–724. https://doi.org/10.1016/j.biortech.2015.09.059

    Article  CAS  Google Scholar 

  10. Zhu N, Ye M, Shi D, Chen M (2017) Reactive compatibilization of biodegradable poly(butylene succinate)/Spirulina microalgae composites. Macromol Res 25:165–171. https://doi.org/10.1007/s13233-017-5025-9

    Article  CAS  Google Scholar 

  11. Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002

    Article  CAS  Google Scholar 

  12. Wijanarko, A.; Dianursanti; Sendjaya, A.Y.; Hermansyah, H.; Witarto, A.B.; Gozan, M.; Sofyan, B.T.; Asami, K.; Ohtaguchi, K.; Soemantojo, R.W.; et al. Enhanced Chlorella vulgaris Buitenzorg growth by photon flux density alteration in serial photobioreactors. Biotechnology and Bioprocess Engineering 2008, 13, 476–482, doi:https://doi.org/10.1007/s12257-008-0149-6.

  13. Otsuki T, Zhang F, Kabeya H, Hirotsu T (2004) Synthesis and tensile properties of a novel composite of chlorella and polyethylene. J Appl Polym Sci 92:812–816. https://doi.org/10.1002/app.13650

    Article  CAS  Google Scholar 

  14. Toro C, Reddy MM, Navia R, Rivas M, Misra M, Mohanty AK (2013) Characterization and application in biocomposites of residual microalgal biomass generated in third generation biodiesel. J Polym Environ 21:944–951. https://doi.org/10.1007/s10924-013-0609-8

    Article  CAS  Google Scholar 

  15. Bulota M, Budtova T (2015) PLA/algae composites: morphology and mechanical properties. Compos A Appl Sci Manuf 73:109–115. https://doi.org/10.1016/j.compositesa.2015.03.001

    Article  CAS  Google Scholar 

  16. Torres S, Navia R, Campbell Murdy R, Cooke P, Misra M, Mohanty AK (2015) Green composites from residual microalgae biomass and Poly(butylene adipate-co-terephthalate): processing and plasticization. ACS Sustain Chem Eng 3:614–624. https://doi.org/10.1021/sc500753h

    Article  CAS  Google Scholar 

  17. Mathiot C, Ponge P, Gallard B, Sassi JF, Delrue F, Le Moigne N (2019) Microalgae starch-based bioplastics: screening of ten strains and plasticization of unfractionated microalgae by extrusion. Carbohyd Polym 208:142–151. https://doi.org/10.1016/j.carbpol.2018.12.057

    Article  CAS  Google Scholar 

  18. Yun J-H, Cho D-H, Heo J, Lee YJ, Lee B, Chang YK, Kim H-S Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. Journal of Applied Phycology 2019, 31: 2245–2258, https://doi.org/10.1007/s10811-019-1751-z.

  19. Auras R, Harte B, Selke S (2006) Sorption of ethyl acetate and d-limonene in poly(lactide) polymers. J Sci Food Agric 86:648–656. https://doi.org/10.1002/jsfa.2391

    Article  CAS  Google Scholar 

  20. Hansen C-M, Smith A-L (2004) Using Hansen solubility parameters to correlate solubility of C60 fullerene in organic solvents and in polymers. Carbon 42:1591–1597. https://doi.org/10.1016/j.carbon.2004.02.011

    Article  CAS  Google Scholar 

  21. Ock H-G, Ahn K-H, Lee S-J (2016) Effect of electric field on polymer/clay nanocomposites depending on the affinities between the polymer and clay. J Appl Polym Sci 133:43582

    Article  Google Scholar 

  22. Xia L, Huang R, Li Y, Song S The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS One 2017, 12: e0186434, https://doi.org/10.1371/journal.pone.0186434.

  23. Shin H-Y, Shim S-H, Ryu Y-J, Yang J-H, Lim S-M, Lee C-G, Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnology and Bioprocess Engineering 2018, 23: 16–22, https://doi.org/10.1007/s12257-017-0392-9.

  24. Mahapatra DM, Chanakya HN, Ramachandra TV Bioenergy generation from components of a Continuous Algal Bioreactor: Analysis of Lipids. Annual IEEE India Conference (INDICON), 2013: 1–6, https://doi.org/10.1109/INDCON.2013.6725886

  25. Bulota M, Budtova T (2016) Valorisation of macroalgae industrial by-product as filler in thermoplastic polymer composites. Compos A Appl Sci Manuf 90:271–277. https://doi.org/10.1016/j.compositesa.2016.07.010

    Article  CAS  Google Scholar 

  26. Madera-Santana TJ, Freile-Pelegrín Y, Encinas JC, Ríos-Soberanis CR, Quintana-Owen P (2015) Biocomposites based on poly(lactic acid) and seaweed wastes from agar extraction: evaluation of physicochemical properties. J Appl Polym Sci 132:42320. https://doi.org/10.1002/app.42320

    Article  CAS  Google Scholar 

  27. Zaaba NF, Jaafar M (2020) A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degradation. Polym Eng Sci 60:2061–2075. https://doi.org/10.1002/pen.25511

    Article  CAS  Google Scholar 

  28. Duygu DY, Udoh AU, Ozer TB, Akbulut A, Erkaya IA, Yildiz K, Guler D (2012) Fourier transform infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. Afr J Biotech 11:3817–3824. https://doi.org/10.5897/ajb11.1863

    Article  CAS  Google Scholar 

  29. Molinaro S, Cruz Romero M, Boaro M, Sensidoni A, Lagazio C, Morris M, Kerry J (2013) Effect of nanoclay-type and PLA optical purity on the characteristics of PLA-based nanocomposite films. J Food Eng 117:113–123. https://doi.org/10.1016/j.jfoodeng.2013.01.021

    Article  CAS  Google Scholar 

  30. Doğan F, Şirin K, Kolcu F, Kaya İ (2018) Conducting polymer composites based on LDPE doped with poly(aminonaphthol sulfonic acid). J Electrostat 94:85–93. https://doi.org/10.1016/j.elstat.2018.07.004

    Article  CAS  Google Scholar 

  31. Zhang L, Kucera LR, Ummadisetty S, Nykaza JR, Elabd YA, Storey RF, Cavicchi KA, Weiss RA (2014) Supramolecular Multiblock Polystyrene-Polyisobutylene Copolymers via Ionic Interactions. Macromolecules 47:4387–4396. https://doi.org/10.1021/ma500934e

    Article  CAS  Google Scholar 

  32. Zhang P, Xu D, Xiao R (2015) Morphology development and size control of PA6 nanofibers from PA6/CAB polymer blends. J Appl Polym Sci 132:42184. https://doi.org/10.1002/app.42184

    Article  CAS  Google Scholar 

  33. Jiang Z, Hu C, Easa SM, Zheng X, Zhang Y (2017) Evaluation of physical, rheological, and structural properties of vulcanized EVA/SBS modified bitumen. J Appl Polym Sci 134:44850. https://doi.org/10.1002/app.44850

    Article  CAS  Google Scholar 

  34. Tham DQ, Trang NTT, Chinh NT, Giang NV, Lam TD, Hoang T (2016) Sustainable composite materials based on ethylene-vinylacetate copolymer and organo-modified silica. Green Processing and Synthesis 5:557–566. https://doi.org/10.1515/gps-2016-0044

    Article  CAS  Google Scholar 

  35. Kim JH, Ahn JH, Hong JS, Ahn KH (2020) Change of rheological/mechanical properties of poly(caprolactone)/CaCO3 composite with particle surface modification. Korea-Aust Rheol J 32:29–39. https://doi.org/10.1007/s13367-020-0004-7

    Article  Google Scholar 

  36. Naeini AH, Kalaee M, Moradi O, Khajavi R, Abdouss M (2022) Eco-friendly inorganic-organic bionanocomposite (Copper oxide–Carboxyl methyl cellulose–Guar gum): preparation and effective removal of dye from aqueous solution. Korean J Chem Eng 39(8):2138–2147. https://doi.org/10.1007/s11814-022-1074-7

    Article  CAS  Google Scholar 

  37. Hong JS, Shin W, Nam H, Yun JH, Kim HS, Ahn KH Sedimentation and Rheological Study of Microalgal Cell (Chlorella sp. HS2) Suspension, Biotechnol Bioprocess Eng 2022, 27: 451–460, https://doi.org/10.1007/s12257-021-0275-y.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2020M3H7A1098305).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Sook Hong.

Ethics declarations

Conflict of interest

The authors declare no competing conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.H., Yun, JH., Kim, HS. et al. Dispersion of unfractionated microalgae in various polymers and its influence on rheological and mechanical properties. Korea-Aust. Rheol. J. 35, 19–29 (2023). https://doi.org/10.1007/s13367-023-00050-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-023-00050-5

Keywords

Navigation