Skip to main content

Advertisement

Log in

The sialyl-Tn antigen synthase genes regulates migration–proliferation dichotomy in prostate cancer cells under hypoxia

  • Research Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

A low-oxygen (hypoxia) tumor microenvironment can facilitate chemotherapy and radiation therapy resistance in tumors and is associated with a poor prognosis. Hypoxia also affects PCa (prostate cancer) phenotype transformation and causes therapeutic resistance. Although O-glycans are known to be involved in the malignancy of various cancers under hypoxia, the expression and function of O-glycans in PCa are not well understood. In this study, the saccharide primer method was employed to analyze O-glycan expression in PCa cells. Results showed that the expression of sTn antigens was increased in PCa cells under hypoxia. Furthermore, it was found that ST6GalNAc1, the sTn antigen synthase gene, was involved in the migration–proliferation dichotomy and drug resistance in PCa cells under hypoxia. The results of this study will contribute to the development of novel diagnostic markers and drug targets for PCa under hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed in this study are included in this article and its supplemental information files.

Abbreviations

TME:

Tumor microenvironment

HIF-1α:

Hypoxia-inducible factor α

PCa:

Prostate cancer

CRPC:

Castration-resistant prostate cancer

Asn:

Asparagine

Thr:

Threonine

LC-MS:

Liquid chromatography-mass spectrometry

GalNAc:

N-Acetylgalactosamine

GlcNAc:

N-Acetylglucosamine

sTn:

Sialyl-Tn

C1GalT1:

glycoprotein-N-acetylgalactosamine 3-β-galactosyltransferase

GCNT3:

β-1,6-N-Acetylglucosaminyltransferase gene 3

ST6GalNAc1:

ST6 N-acetylgalactosaminide α-2,6-sialyltransferase 1

B3GALT5:

β-1,3-Galactosyltransferase 5

B4GALT1/5:

β-1,4-Galactosyltransferase 1/5

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

EGFR:

Epidermal growth factor receptor

MDR:

Multidrug resistance

References

  1. De Palma, M., Biziato, D., Petrova, T.V.: Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 17, 457–474 (2017). https://doi.org/10.1038/nrc.2017.51

    Article  CAS  PubMed  Google Scholar 

  2. Lim, B., Woodward, W.A., Wang, X., Reuben, J.M., Ueno, N.T.: Inflammatory breast cancer biology: the tumour microenvironment is key. Nat. Rev. Cancer 18, 485–499 (2018). https://doi.org/10.1038/s41568-018-0010-y

    Article  CAS  PubMed  Google Scholar 

  3. Fernández, J.P., Luddy, K.A., Harmon, C., O’Farrelly, C.: Hepatic tumor microenvironments and effects on NK cell phenotype and function. Int. J. Mol. Sci 20, 4131 (2019). https://doi.org/10.3390/ijms20174131

    Article  CAS  Google Scholar 

  4. Bejarano, L., Jordāo, M.J.C., Joyce, J.A.: Therapeutic targeting of the tumor microenvironment. Cancer Discov 4, 933–959 (2021). https://doi.org/10.1158/2159-8290.CD-20-1808

    Article  Google Scholar 

  5. Wei, J., Chen, Z., Hu, M., He, Z., Jiang, D., Long, J., Du, H.: Characterizing intercellular communication of pan-cancer reveals SPP1+ tumor-associated macrophage expanded in hypoxia and promoting cancer maligancy through single-cell RNA-seq data. Front. Cell. Dev. Biol 9, 749210 (2021). https://doi.org/10.3389/fcell.2021.749210

    Article  PubMed  PubMed Central  Google Scholar 

  6. Greville, G., Llop, E., Huang, C., Creagh-Flynn, J., Pfister, S., O’Flaherty, R., Madden, S.F., Peracaula, R., Rudd, P.M., McCann, A., Saldova, R.: Hypoxia alters epigenetic and N-glycosylation profiles of ovarian and breast cancer cell lines in-vitro Front. Oncol 10, 1218 (2020). https://doi.org/10.3389/fonc.2020.01218

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wilson, W.R., Hay, M.P.: Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 11, 393–410 (2011). https://doi.org/10.1038/nrc3064

    Article  CAS  PubMed  Google Scholar 

  8. Arriagada, C., Silva, P., Torres, V.A.: Role of glycosylation in hypoxia-driven cell migration and invasion. Cell. Adhes. Migr 13, 13–22 (2019). https://doi.org/10.1080/19336918.2018.1491234

    Article  CAS  Google Scholar 

  9. Ma, S., Zhao, Y., Lee, W.C., Ong, L., Lee, P.L., Jiang, Z., Oguz, G., Niu, Z., Liu, M., Goh, J.Y., Wang, W., Bustos, M.A., Ehmsen, S., Ramasamy, A., Hoon, D.S.B., Ditzel, H.J., Tan, E.Y., Chen, Q., Yu, Q.: Hypoxia induces HIF1α-dependent epigenetic vulnerability in triple negative breast cancer to confer immune effector dysfunction and resistance to anti-PD-1 immunotherapy. Nat. Commun 13, 4118 (2022). https://doi.org/10.1038/s41467-022-31764-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Peng, F., Wang, J.H., Fan, W.J., Meng, Y.T., Li, M.M., Li, T.T., Cui, B., Wang, H.F., Zhao, Y., An, F., Guo, T., Liu, X.F., Zhang, L., Lv, L., Lv, D.K., Xu, L.Z., Xie, J.J., Lin, W.X., Lam, E.W.F., Xu, J., Liu, Q.: Glycolysis gatekeeper PDK1 reprograms breast cancer stem cells under hypoxia. Oncogene 37, 1062–1074 (2018). https://doi.org/10.1038/onc.2017.368

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, Y., Hong, Y., Wang, D., Duan, L., Liu, Y., Li, L., Liu, D., Zhuang, K., Chaoxin, W., Zheng, G., Chunyong, H., Guoyan, L.: Hsa_circ_0076305 induces migration-proliferation dichotomy in gastric cancer. Oncol. Lett 21, 220 (2021). https://doi.org/10.3892/ol.2021.12481

    Article  CAS  Google Scholar 

  12. Bhandari, D., Lopez-Sanchez, I., To, A., Lo, I.C., Aznar, N., Leyme, A., Gupta, V., Niesman, I., Maddox, A.L., Garcia-Marcos, M., Farquhar, M.G., Ghosh, P.: Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy. Proc. Natl. Acad. Sci. U. S. A. 112, E4874–E4883 (2015). https://doi.org/10.1073/pnas.1514157112

  13. Chen, C., Enomoto, A., Weng, L., Taki, T., Shiraki, Y., Mii, S., Ichihara, R., Kanda, M., Koike, M., Kodera, Y., Takahashi, M.: Complex roles of the actin-binding protein Girdin/GIV in DNA damage-induced apoptosis of cancer cells. Cancer Sci 111, 4303–4317 (2020). https://doi.org/10.1111/cas.14637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ghosh, P., Beas, A.O., Bornheimer, S.J., Garcia-Marcos, M., Forry, E.P., Johannson, C., Ear, J., Jung, B.H., Cabrera, B., Carethers, J.M., Farquhar, M.G.: A Gαi-GIV molecular complex binds epidermal growth factor receptor and determines whether cells migrate or proliferate. Mol. Biol. Cell 21, 2338–2354 (2010). https://doi.org/10.1091/mbc.E10-01-0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, S.D., Rath, P., Lal, B., Richard, J.P., Li, Y., Goodwin, C.R., Laterra, J., Xia, S.: EphB2 receptor controls proliferation/migration dichotomy of glioblastoma by interacting with focal adhesion kinase. Oncogene 31, 5132–5143 (2012). https://doi.org/10.1038/onc.2012.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, J., Sun, Y., Xu, X., Wang, D., He, J., Zhou, H., Lu, Y., Zeng, J., Du, F., Gong, A., Xu, M.: YTH domain family 2 orchestrates epithelial- mesenchymal transition/proliferation dichotomy in pancreatic cancer cells. Cell. Cycle 16, 2259–2271 (2017). https://doi.org/10.1080/15384101.2017.1380125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stein, M.N., Patel, N., Bershadskiy, A., Sokoloff, A., Singer, E.A.: Androgen synthesis inhibitors in the treatment of castration-resistant prostate cancer. Asian J. Androl 16, 387–400 (2014). https://doi.org/10.4103/1008-682X.129133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hochachka, P.W., Rupert, J.L., Goldenberg, L., Gleave, M., Kozlowski, P.: Going malignant: the hypoxia-cancer connection in the prostate. BioEssays 24, 749–757 (2002). https://doi.org/10.1002/bies.10131

    Article  CAS  PubMed  Google Scholar 

  19. Movsas, B., Chapman, J.D., Hanlon, A.L., Horwitz, E.M., Pinover, W.H., Greenberg, R.E., Stobbe, C., Hanks, G.E.: Hypoxia in human prostate carcinoma: an Eppendorf PO2 study. Am. J. Clin. Oncol 24, 458–461 (2001). https://doi.org/10.1097/00000421-200110000-00009

    Article  CAS  PubMed  Google Scholar 

  20. Yasumizu, Y., Hongo, H., Kosaka, T., Mikami, S., Nishimoto, K., Kikuchi, E., Oya, M.: PKM2 under hypoxic environment causes resistance to mTOR inhibitor in human castration resistant prostate cancer. Oncotarget 9, 27698–27707 (2018). https://doi.org/10.18632/oncotarget.25498

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alqawi, O., Moghaddas, M., Singh, G.: Effects of geldanamycin on HIF-1α mediated angiogenesis and invasion in prostate cancer cells. Prostate Cancer Prostatic Dis 9, 126–135 (2006). https://doi.org/10.1038/sj.pcan.4500852

    Article  CAS  PubMed  Google Scholar 

  22. Fraga, A., Ribeiro, R., Príncipe, P., Lopes, C., Medeiros, R.: Hypoxia and prostate cancer aggressiveness: a tale with many endings. Clin. Genitourin. Cancer 4, 295–301 (2015). https://doi.org/10.1016/j.clgc.2015.03.006

    Article  Google Scholar 

  23. Pearce, O.M.T.: Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 28, 670–696 (2018). https://doi.org/10.1093/glycob/cwy023

    Article  CAS  PubMed  Google Scholar 

  24. Chernykh, A., Kawahara, R., Thaysen-Andersen, M.: Towards structure-focused glycoproteomics. Biochem. Soc. Trans 49, 161–186 (2021). https://doi.org/10.1042/BST20200222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ho, W.L., Hsu, W.M., Huang, M.C., Kadomatsu, K., Nakagawara, A.: Protein glycosylation in cancers and its potential therapeutic applications in neuroblastoma. J. Hematol. Oncol 9, 100 (2016). https://doi.org/10.1186/s13045-016-0334-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Potapenko, I.O., Haakensen, V.D., Lüders, T., Helland, Ã, Bukholm, I., Sørlie, T., Kristensen, V.N., Lingjærde, O.C., Børresen-Dale, A.L.: Glycan gene expression signatures in normal and malignant breast tissue; possible role in diagnosis and progression. Mol. Oncol 4, 98–118 (2010). https://doi.org/10.1016/j.molonc.2009.12.001

    Article  CAS  PubMed  Google Scholar 

  27. Hollingsworth, M.A., Swanson, B.J.: Mucins in cancer: Protection and control of the cell surface. Nat. Rev. Cancer 4, 45–60 (2004). https://doi.org/10.1038/nrc1251

    Article  CAS  PubMed  Google Scholar 

  28. Wandall, H.H., Nielsen, M.A.I., King-Smith, S., de Haan, N., Bagdonaite, I.: Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 288, 7183–7212 (2021). https://doi.org/10.1111/febs.16148

    Article  CAS  PubMed  Google Scholar 

  29. Tan, Z., Wang, C., Li, X., Guan, F.: Bisecting N-acetylglucosamine structures inhibit hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Front. Psychiatry 9, 210 (2018). https://doi.org/10.3389/fphys.2018.00210

    Article  Google Scholar 

  30. Koike, T., Kimura, N., Miyazaki, K., Yabuta, T., Kumamoto, K., Takenoshita, S., Chen, J., Kobayashi, M., Hosokawa, M., Taniguchi, A., Kojima, T., Ishida, N., Kawakita, M., Yamamoto, H., Takematsu, H., Suzuki, A., Kozutsumi, Y., Kannagi, R.: Erratum: Hypoxia induces adhesion molecules on cancer cells: A missing link between Warburg effect and induction of selectin-ligand carbohydrates. Proc. Natl. Acad. Sci. U. S. A. 21, 8132-7 (2004). https://doi.org/10.1073/pnas.0402088101

  31. Miura, Y., Arai, T., Yamagata, T.: Synthesis of amphiphilic lactosides that possess a lactosylceramide-mimicking N-acyl structure: alternative universal substrates for endo-type glycosylceramidases. Carbohydr. Res 289, 193–199 (1996). https://doi.org/10.1016/0008-6215(96)00132-2

    Article  CAS  PubMed  Google Scholar 

  32. Miura, Y., Yamagata, T.: Glycosylation of lactosylceramide analogs in animal cells: amphipathic disaccharide primers for glycosphingolipid synthesis. Biochem. Biophys. Res. Commun 241, 698–703 (1997). https://doi.org/10.1006/bbrc.1997.7876

    Article  CAS  PubMed  Google Scholar 

  33. Nakajima, H., Miura, Y., Yamagata, T.: Glycosylation of amphipathic lactoside primers with consequent inhibition of endogenous glycosphingolipid synthesis. J. Biochem 124, 148–156 (1998). https://doi.org/10.1093/oxfordjournals.jbchem.a022073

    Article  CAS  PubMed  Google Scholar 

  34. Sato, T., Takashiba, M., Hayashi, R., Zhu, X., Yamagata, T.: Glycosylation of dodecyl 2-acetamido-2-deoxy-β-D-glucopyranoside and dodecyl β-D-galactopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranoside as saccharide primers in cells. Carbohydr. Res. 343, 831–838 (2008). https://doi.org/10.1016/j.carres.2008.01.022

  35. Zhu, X., Hatanaka, K., Yamagata, T., Sato, T.: Structural analysis of glycosphingolipid analogues obtained by the saccharide primer method using CE-ESI-MS. Electrophoresis 30, 3519–3526 (2009). https://doi.org/10.1002/elps.200800719

    Article  CAS  PubMed  Google Scholar 

  36. Otsuka, Y., Sato, T.: Saccharide primers comprising xylosyl-serine primed phosphorylated oligosaccharides act as intermediates in glycosaminoglycan biosynthesis. ACS Omega 2, 3110–3122 (2017). https://doi.org/10.1021/acsomega.7b00073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Otsuka, Y., Sato, T.: Comparative quantification method for glycosylated products elongated on β-xylosides using a stable isotope-labeled saccharide primer. Anal. Chem 90, 5201–5208 (2018). https://doi.org/10.1021/acs.analchem.7b05438

    Article  CAS  PubMed  Google Scholar 

  38. Sakura, R., Nagai, K., Yagi, Y., Takahashi, Y., Ide, Y., Yagi, Y.: In vitro synthesis of mucin-type O-glycans using saccharide primers comprising GalNAc-Ser and GalNAc-Thr residues. Carbohydr. Res 511, 108495 (2022). https://doi.org/10.1016/j.carres.2021.108495

    Article  CAS  PubMed  Google Scholar 

  39. Yamamoto, D., Sasaki, K., Kosaka, T., Oya, M., Sato, T.: Functional analysis of GCNT3 for cell migration and EMT of castration-resistant prostate cancer cells. Glycobiology 32, 897–908 (2022). https://doi.org/10.1093/glycob/cwac044

    Article  PubMed  Google Scholar 

  40. Chang, Y.S., Chen, W.Y., Yin, J.J., Sheppard-Tillman, H., Huang, J., Liu, Y.N.: EGF receptor promotes prostate cancer bone metastasis by downregulating miR-1 and activating TWIST1. Cancer Res 75, 3077–3086 (2015). https://doi.org/10.1158/0008-5472.CAN-14-3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Qin, H., Liu, J., Yu, M., Wang, H., Thomas, A.M., Li, S., Yan, Q., Wang, L.: FUT7 promotes the malignant transformation of follicular thyroid carcinoma through α1,3-fucosylation of EGF receptor. Exp. Cell. Res 393, 112095 (2020). https://doi.org/10.1016/j.yexcr.2020.112095

    Article  CAS  Google Scholar 

  42. Jing, X., Yang, F., Shao, C., Wei, K., Xie, M., Shen, H., Shu, Y.: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 18, 157 (2019). https://doi.org/10.1186/s12943-019-1089-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tao, J., Yang, G., Zhou, W., Qiu, J., Chen, G., Luo, W., Zhao, F., You, L., Zheng, L., Zhang, T., Zhao, Y.: Targeting hypoxic tumor microenvironment in pancreatic cancer. J. Hematol. Oncol 14, 14 (2021). https://doi.org/10.1186/s13045-020-01030-w

    Article  PubMed  PubMed Central  Google Scholar 

  44. Marotta, D., Karar, J., Jenkins, W.T., Kumanova, M., Jenkins, K.W., Tobias, J.W., Baldwin, D., Hatzigeorgiou, A., Alexiou, P., Evans, S.M., Alarcon, R., Maity, A., Koch, C., Koumenis, C.: In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection. Cancer Res 71, 779–789 (2011). https://doi.org/10.1158/0008-5472.CAN-10-3061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Silva-Filho, A.F., Sena, W.L.B., Lima, L.R.A., Carvalho, L.V.N., Pereira, M.C., Santos, L.G.S., Santos, R.V.C., Tavares, L.B., Pitta, M.G.R., Rêgo, M.J.B.M.: Glycobiology modifications in intratumoral hypoxia: the breathless side of glycans interaction. Cell. Physiol. Biochem 41, 1801–1829 (2017). https://doi.org/10.1159/000471912

    Article  CAS  PubMed  Google Scholar 

  46. Sun, R., Kim, A.M.J., Lim, S.O.: Glycosylation of immune receptors in cancer. Cells 10, 1100 (2021). https://doi.org/10.3390/cells10051100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sood, A., Ma, S., Pradeep, S., Hu, W., Zhang, D., Coleman, R.: The role of tumor microenvironment in resistance to anti-angiogenic therapy. F1000Res 7, 326 (2018). https://doi.org/10.12688/f1000research.11771.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Croci, D.O., Cerliani, J.P., Pinto, N.A., GMorosi, L., Rabinovich, G.A.: Regulatory role of glycans in the control of hypoxia-driven angiogenesis and sensitivity to anti-angiogenic treatment. Glycobiology 24, 1283–1290 (2014). https://doi.org/10.1093/glycob/cwu083

    Article  CAS  PubMed  Google Scholar 

  49. Jones, R.B., Dorsett, K.A., Hjelmeland, A.B., Bellis, S.L.: The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1 signaling. J. Biol. Chem 293, 5659–5667 (2018). https://doi.org/10.1074/jbc.RA117.001194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Stewart, G.D., Ross, J.A., McLaren, D.B., Parker, C.C., Habib, F.K., Riddick, A.C.P.: The relevance of a hypoxic tumour microenvironment in prostate cancer. BJU Int 105, 8–13 (2010). https://doi.org/10.1111/j.1464-410X.2009.08921.x

    Article  CAS  PubMed  Google Scholar 

  51. Lee, J.E., Shin, S.H., Shin, H.W., Chun, Y.S., Park, J.W.: Nuclear FGFR2 negatively regulates hypoxia-induced cell invasion in prostate cancer by interacting with HIF-1 and HIF-2. Sci. Rep 9, 3480 (2019). https://doi.org/10.1038/s41598-019-39843-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Butterworth, K.T., McCarthy, H.O., Devlin, A., Ming, L., Robson, T., McKeown, S.R., Worthington, J.: Hypoxia selects for androgen independent LNCaP cells with a more malignant geno- and phenotype. Int. J. Cancer 123, 760–768 (2008). https://doi.org/10.1002/ijc.23418

    Article  CAS  PubMed  Google Scholar 

  53. Kannagi, R., Sakuma, K., Miyazaki, K., Lim, K.T., Yusa, A., Yin, J., Izawa, M.: Altered expression of glycan genes in cancers induced by epigenetic silencing and tumor hypoxia: clues in the ongoing search for new tumor markers. Cancer Sci 101, 586–593 (2010). https://doi.org/10.1111/j.1349-7006.2009.01455.x

    Article  CAS  PubMed  Google Scholar 

  54. Peixoto, A., Fernandes, E., Gaiteiro, C., Lima, L., Azevedo, R., Soares, J., Cotton, S., Parreira, B., Neves, M., Amaro, T., Tavares, A., Teixeira, F., Palmeira, C., Rangel, M., Silva, A.M.N., Reis, C.A., Santos, L.L., Oliveira, M.J., Ferreira, J.A.: Hypoxia enhances the malignant nature of bladder cancer cells and concomitantly antagonizes protein O-glycosylation extension. Oncotarget 7, 63138–63157 (2016). https://doi.org/10.18632/oncotarget.11257

    Article  PubMed  PubMed Central  Google Scholar 

  55. Takamiya, R., Ohtsubo, K., Takamatsu, S., Taniguchi, N., Angata, T.: The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology 23, 178–187 (2013). https://doi.org/10.1093/glycob/cws139

    Article  CAS  PubMed  Google Scholar 

  56. Julien, S., Lagadec, C., Krzewinski-Recchi, M.A., Courtand, G., Le Bourhis, X., Delannoy, P.: Stable expression of sialyl-Tn antigen in T47-D cells induces a decrease of cell adhesion and an increase of cell migration. Breast Cancer Res. Treat 90, 77–84 (2005). https://doi.org/10.1007/s10549-004-3137-3

    Article  CAS  PubMed  Google Scholar 

  57. Ogawa, T., Hirohashi, Y., Murai, A., Nishidate, T., Okita, K., Wang, L., Ikehara, Y., Satoyoshi, T., Usui, A., Kubo, T., Nakastugawa, M., Kanaseki, T., Tsukahara, T., Kutomi, G., Furuhata, T., Hirata, K., Sato, N., Mizuguchi, T., Takemasa, I., Torigoe, T.: ST6GALNAC1 plays important roles in enhancing cancer stem phenotypes of colorectal cancer via the akt pathway. Oncotarget 8, 112550–112564 (2017). https://doi.org/10.18632/oncotarget.22545

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ozaki, H., Matsuzaki, H., Ando, H., Kaji, H., Nakanishi, H., Ikehara, Y., Narimatsu, H.: Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model. Clin. Exp. Metastasis 29, 229–238 (2012). https://doi.org/10.1007/s10585-011-9445-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Albuquerque, A.P.B., Balmaña, M., Mereiter, S., Pinto, F., Reis, C.A., Beltrão, E.I.C.: Hypoxia and serum deprivation induces glycan alterations in triple negative breast cancer cells. Biol. Chem 399, 661–672 (2018). https://doi.org/10.1515/hsz-2018-0121

    Article  CAS  PubMed  Google Scholar 

  60. Wang, W.Y., Cao, Y.X., Zhou, X., Wei, B., Zhan, L., Sun, S.Y.: Stimulative role of ST6GALNAC1 in proliferation, migration and invasion of ovarian cancer stem cells via the akt signaling pathway. Cancer Cell. Int 19, 86 (2019). https://doi.org/10.1186/s12935-019-0780-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Julien, S., Adriaenssens, E., Ottenberg, K., Furlan, A., Courtand, G., Vercoutter-Edouart, A.S., Hanisch, F.G., Delannoy, P., Le Bourhis, X.: ST6GalNAc I expression in MDA-MB-231 breast cancer cells greatly modifies their O-glycosylation pattern and enhances their tumourigenicity. Glycobiology 16, 54–64 (2006). https://doi.org/10.1093/glycob/cwj033

    Article  CAS  PubMed  Google Scholar 

  62. Maignien, C., Santulli, P., Chouzenoux, S., Gonzalez-Foruria, I., Marcellin, L., Doridot, L., Jeljeli, M., Grange, P., Reis, F.M., Chapron, C., Batteux, F.: Reduced α-2,6 sialylation regulates cell migration in endometriosis. Hum. Reprod 34, 479–490 (2019). https://doi.org/10.1093/humrep/dey391

    Article  CAS  PubMed  Google Scholar 

  63. Yu, X., Wu, Q., Wang, L., Zhao, Y., Zhang, Q., Meng, Q., Pawan, Wang, S.: Silencing of ST6GalNAc I suppresses the proliferation, migration and invasion of hepatocarcinoma cells through PI3K/AKT/NF-κB pathway. Tumour Biol 37, 12213–12221 (2016). https://doi.org/10.1007/s13277-016-5086-y

    Article  CAS  PubMed  Google Scholar 

  64. Peixoto, A., Freitas, R., Ferreira, D., Relvas-santos, M.: Metabolomics, transcriptomics and functional glycomics reveals bladder cancer cells plasticity and enhanced aggressiveness facing hypoxia and glucose deprivation. bioRxiv. 225084000 (2021). https://doi.org/10.1101/2021.02.14.431133

  65. Santos, S.N., Junqueira, M.S., Francisco, G., Vilanova, M., Magalhães, A., Baruffi, M.D., Chammas, R., Harris, A.L., Reis, C.A., Bernardes, E.S.: O-glycan sialylation alters galectin-3 subcellular localization and decreases chemotherapy sensitivity in gastric cancer. Oncotarget 7, 83570–83587 (2016). https://doi.org/10.18632/oncotarget.13192

    Article  PubMed  PubMed Central  Google Scholar 

  66. Miles, D.W., Happerfield, L.C., Smith, P., Gillibrand, R., Bobrow, L.G., Gregory, W.M., Rubens, R.D.: Expression of sialyl-Tn predicts the effect of adjuvant chemotherapy in node-positive breast cancer. Br. J. Cancer 70, 1272–1275 (1994). https://doi.org/10.1038/bjc.1994.486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Park, J.J., Yi, J.Y., Jin, Y.B., Lee, Y.J., Lee, J.S., Lee, Y.S., Ko, Y.G., Lee, M.: Sialylation of epidermal growth factor receptor regulates receptor activity and chemosensitivity to gefitinib in colon cancer cells. Biochem. Pharmacol 83, 849–857 (2012). https://doi.org/10.1016/j.bcp.2012.01.007

    Article  CAS  PubMed  Google Scholar 

  68. Shen, L., Yu, M., Xu, X., Gao, L., Ni, J., Luo, Z., Wu, S.: Knockdown of β3GnT8 reverses 5-fluorouracil resistance in human colorectal cancer cells via inhibition the biosynthesis of polylactosamine-type N-glycans. Int. J. Oncol 45, 2560–2568 (2014). https://doi.org/10.3892/ijo.2014.2672

    Article  CAS  PubMed  Google Scholar 

  69. Wagner, K.W., Punnoose, E.A., Januario, T., Lawrence, D.A., Pitti, R.M., Lancaster, K., Lee, D., Von Goetz, M., Yee, S.F., Totpal, K., Huw, L., Katta, V., Cavet, G., Hymowitz, S.G., Amler, L., Ashkenazi, A.: Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med 13, 1070–1077 (2007). https://doi.org/10.1038/nm1627

    Article  CAS  PubMed  Google Scholar 

  70. Khiaowichit, J., Talabnin, C., Dechsukhum, C., Silsirivanit, A., Talabnin, K.: Down-regulation of C1GALT1 enhances the progression of cholangiocarcinoma through activation of AKT/ERK signaling pathways. Life 12, 174 (2022). https://doi.org/10.3390/life12020174

    Article  CAS  Google Scholar 

  71. Gao, Y., Foster, R., Yang, X., Feng, Y., Shen, J.K., Mankin, H.J., Hornicek, F.J., Amiji, M.M., Duan, Z.: Up-regulation of CD44 in the development of metastasis, recurrence and drug resistance of ovarian cancer. Oncotarget 6, 9313–9326 (2015). https://doi.org/10.18632/oncotarget.3220

    Article  PubMed  PubMed Central  Google Scholar 

  72. Nath, S., Daneshvar, K., Roy, L.D., Grover, P., Kidiyoor, A., Mosley, L., Sahraei, M., Mukherjee, P.: MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogenesis 2, e51–e59 (2013). https://doi.org/10.1038/oncsis.2013.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. O’Neill, A.J., Prencipe, M., Dowling, C., Fan, Y., Mulrane, L., Gallagher, W.M., O’Connor, D., O’Connor, R., Devery, A., Corcoran, C., Rani, S., O’Driscoll, L., Fitzpatrick, J.M., Watson, R.W.G.: Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Mol. Cancer 10, 126 (2011). https://doi.org/10.1186/1476-4598-10-126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kramer, R., Weber, T.K., Arceci, R., Ramchurren, N., Kastrinakis, W.V., Steele, G., Summerhayes, I.C.: Inhibition of N-linked glycosylation of P-glycoprotein by tunicamycin results in a reduced multidrug resistance phenotype. Br. J. Cancer 71, 670–675 (1995). https://doi.org/10.1038/bjc.1995.133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Greer, D.A., lvey, S.: Distinct N-glycan glycosylation of p-glycoprotein isolated from the human uterine sarcoma cell line MES-SA/DX5. Mol. Cell. Biochem 1770, 1275–1282 (2012). https://doi.org/10.1016/j.bbagen.2007.07.005

    Article  CAS  Google Scholar 

  76. Very, N., Lefebvre, T., Yazidi-Belkoura, E.: Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 9, 1380–1402 (2017). https://doi.org/10.18632/oncotarget.22377

    Article  PubMed  PubMed Central  Google Scholar 

  77. Lin, M.C., Chien, P.H., Wu, H.Y., Chen, S.T., Juan, H.F., Lou, P.J., Huang, M.C.: C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene 37, 5780–5793 (2018). https://doi.org/10.1038/s41388-018-0375-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tajadura-Ortega, V., Gambardella, G., Skinner, A., Halim, A., Van Coillie, J., Schjoldager, K.T.G., Beatson, R., Graham, R., Achkova, D., Taylor-Papadimitriou, J., Ciccarelli, F.D., Burchell, J.M.: O-linked mucin-type glycosylation regulates the transcriptional programme downstream of EGFR. Glycobiology 31, 200–210 (2021). https://doi.org/10.1093/glycob/cwaa075

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

This work was partly supported by MEXT-Supported Program for the Strategic Research Foundation at Private Universities (S1411003 to TS) and JSPS KAKENHI (JP23241075 to T.S.), Japan.

Author information

Authors and Affiliations

Authors

Contributions

Daiki Yamamoto and Toshinori Sato conceived and planned the experiments, and wrote the main manuscript text. Takeo Kosaka, Hiroshi Hongo and Mototsugu Oya helped supervise the project and contributed analysis tools. Daiki Yamamoto carried out the experiment, and Natsumi Aoki contributed sample preparation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Toshinori Sato.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1.25 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, D., Hongo, H., Kosaka, T. et al. The sialyl-Tn antigen synthase genes regulates migration–proliferation dichotomy in prostate cancer cells under hypoxia. Glycoconj J 40, 199–212 (2023). https://doi.org/10.1007/s10719-023-10104-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10104-z

Keywords

Navigation