Skip to main content
Log in

Research on the Effect of Amino Acid Substitution of Cyclosaplin Peptide in Breast Cancer Cell Line (MDA-MB-231) and in a Human Leukemia Cell Line (K562)

  • RESEARCH ARTICLE
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

It was the aim of this study to develop Cyclosaplin analogues and assess the anticancer effects of those peptide analogues on both MDA-MB-231 and K562 cell lines. The analogues of Cyclosaplin peptide (Cyclosaplin-2A and Cyclosaplin-7G) were designed and then investigated by online web server predictor AntiCP. The peptide analogues were applied to MDA-MB-231 and K562 cells in various concentrations and for various periods of time. The anticancer potential was confirmed by the MTT assay. Haemolytic activity also was assessed. In order to investigate the apoptotic effects of peptides on cancer cells, different tests such as morphological examination, Giemsa test, and DNA fragmentation were performed. Lactate dehydrogenase leakage assay was used to reject peptide-induced necrosis. As a result of computational studies, we discovered that the analogues of peptides also have anticancer properties. However, we have found through our practical research that analogues had less anticancer properties than their parent peptides. The MTT assay and morphological study confirmed the anticancer effects. For MD-AMB-231 cells, an IC50 of Cyclosaplin-2A was 70 µg/mL, and Cyclosaplin-7G was 90 µg/mL. In addition, for K562 cells, an IC50 of Cyclosaplin-2A was 10 µg/mL, and Cyclosaplin-7G was 15 µg/mL. Other tests also confirmed the anticancer effect of the peptide analogues. According to haemolytic assays, none of the peptide analogues possessed any haemolytic activity against human erythrocytes, indicating that the compounds are non-toxic to normal cells. There was evidence that peptide analogues, particularly Cyclosaplin-2A, had anticancer properties against cells derived from breast (MDA-MB-231) and blood (K562) cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Marqus, S., Pirogova, E., and Piva, T.J., Evaluation of the use of therapeutic peptides for cancer treatment, J. Biomed. Sci., 2017, vol. 24, no. 1, p. 21.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Li, Q., Zhou, W., Wang, D., and Wang, S., Prediction of anticancer peptides using a low-dimensional feature model, Front. Bioeng. Biotechnol., 2020, vol. 8, p. 892.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shoombuatong, W., Schaduangrat, N., and Nantasenamat, C., Unraveling the bioactivity of anticancer peptides as deduced from machine learning, EXCLI J., 2018, vol. 17, pp. 734–752.

    PubMed  PubMed Central  Google Scholar 

  4. Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., and Kinzler, K.W., Cancer genome landscapes, Science, 2013, vol. 340, no. 6127, pp. 1546–1558.

    Article  Google Scholar 

  5. Global Burden of Disease Cancer Collaboration, The global burden of cancer 2013, JAMA Oncol., 2015, vol. 1, no. 4, pp. 505–527.

    Article  PubMed Central  Google Scholar 

  6. Idikio, H.A., Human cancer classification: A systems biology-based model integrating morphology, cancer stem cells, proteomics, and genomics, J. Cancer, 2011, vol. 2, pp. 107–115.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang, S.H. and Yu, J., Structure-based design for binding peptides in anti-cancer therapy, Biomaterials, 2018, vol. 156, pp. 1–15.

    Article  CAS  PubMed  Google Scholar 

  8. Lu, C., Wang, W., Ma, N., Cui, Y., Li, X., and Zhou, Y., Anticancer peptide from Chinese toad (Bufo Bufo Gargarizans) skin enhanced sensitivity to 5-Fu in hepatocarcinoma cells (HepG2), Clin. Oncol. Cancer Res., 2011, vol. 8, no. 3, pp. 149–154.

    Article  CAS  Google Scholar 

  9. Agrawal, P., Bhagat, D., Mahalwal, M., Sharma, N., and Raghava, G.P.S., AntiCP 2.0: an updated model for predicting anticancer peptides, Brief Bioinform., 2021, vol. 22, no. 3, p. bbaa153.

  10. E-Kobon, T., Thongararm, P., Roytrakul, S., Meesuk, L., and Chumnanpuen, P., Prediction of anticancer peptides against MCF-7 breast cancer cells from the peptidomes of Achatina fulica mucus fractions, Comput. Struct. Biotechnol. J., 2016, vol. 14, pp. 49–57.

    Article  CAS  PubMed  Google Scholar 

  11. Boopathi, V., Subramaniyam, S., Malik, A., Lee, G., Manavalan, B., and Yang, D.C., MACppred: A support vector machine-based meta-predictor for identification of anticancer peptides, Int. J. Mol. Sci. 2019, vol. 20, no. 8, p. 1964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, Y.B., Wang, X.F., Wang, H.Y., Liu, Y., and Chen, Y., Studies on mechanism of action of anticancer peptides by modulation of hydrophobicity within a defined structural framework, Mol. Cancer Ther., 2011, vol. 10, no. 3, pp. 416–426.

    Article  CAS  PubMed  Google Scholar 

  13. Tyagi, A., Kapoor, P., Kumar, R., Chaudhary, K., Gautam, A., and Raghava, G.P.S., In silico models for designing and discovering novel anticancer peptides, Sci. Rep., 2013, vol. 3, p. 2984.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thundimadathil, J., Cancer treatment using peptides: current therapies and future prospects, J. Amino Acids, 2012, vol. 2012, p. 967347.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mahassni, S.H., Al-Reemi, R.M., Mahassni, S.H., and Al-Reemi, R.M., Apoptosis and necrosis of human breast cancer cells by an aqueous extract of garden cress (Lepidium sativum) seeds, Saudi J. Biol. Sci., 2013, vol. 20, no. 2, pp. 131–139.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yi, H.C., You, Z.H., Zhou, X., Cheng, L., Li, X., Jiang, T.H., and Chen, Z.H., A deep learning long short-term memory model to predict anticancer peptides using high-efficiency feature representation, Mol. Ther. Nucleic Acids, 2019, vol. 17, pp. 1–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kang, S.J., Ji, H.Y., and Lee, B.J., Anticancer activity of undecapeptide analogues derived from antimicrobial peptide, Brevinin-1EMa, Arch. Pharm. Res., 2012, vol. 35, no. 5, pp. 791–799.

    Article  CAS  PubMed  Google Scholar 

  18. Xie, M., Liu, D., Yang, Y., Xie, M., Liu, D., and Yang, Y., Anti-cancer peptides: classification, mechanism of action, reconstruction and modification: Anticancer peptides, Open Biol., 2020, vol. 10, no. 7, p. 200004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prabhu, P.T., Panneerselvam, P., Selvakumari, S., and Sivaraman, D., In vitro and in vivo anticancer activity of Ethanolic extract of Canthium Parviflorum Lam. on DLA and Hela cell lines, Int. J. Drug Dev. Res., 2011, vol. 3, pp. 280–285.

    Google Scholar 

  20. Gaspar, D., Salomé Veiga, A., and Castanho, M.A.R.B., From antimicrobial to anticancer peptides. A review, Front. Microbiol., 2013, vol. 4, p. 249.

    Article  Google Scholar 

  21. Ausbacher, D., Svineng, G., Hansen, T., and Strøm, M.B., Anticancer mechanisms of action of two small amphipathic β 2,2-amino acid derivatives derived from antimicrobial peptides, Biochim. Biophys. Acta—iomembr., 2012, vol. 1818, no. 11, pp. 2917–2925.

  22. Zhao, R.L., Han, J.Y., Han, W.Y., He, H.X., and Ma, J.F., Effects of two novel peptides from skin of lithobates catesbeianus on tumor cell morphology and proliferation, in Molecular Cloning—Selected Applications in Medicine and Biology, Brown, G.G., Ed., IntechOpen, 2011, pp. 73–80.

    Google Scholar 

  23. Hou, L., Zhao, X., Wang, P., Ning, Q., Meng, M., and Liu, C., Antitumor activity of antimicrobial peptides containing CisoDGRC in CD13 negative breast cancer cells, PLoS One, 2013, vol. 8, no. 1, p. e53491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiangjong, W., Chutipongtanate, S., and Hongeng, S., Anticancer peptide: Physicochemical property, functional aspect and trend in clinical application (Review), Int. J. Oncol., 2020, vol. 57, no. 3, pp. 678–696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mishra, A., Gauri, S.S., Mukhopadhyay, S.K., Chatterjee, S., Das, S.S., Mandal, S.M., and Dey, S., Identification and structural characterization of a new pro-apoptotic cyclic octapeptide cyclosaplin from somatic seedlings of Santalum album L., Peptides, 2014, vol. 54, pp. 148–158.

    Article  CAS  PubMed  Google Scholar 

  26. Srinivas, B.K., Shivamadhu, M.C., Devegowda, P.S., Mathew, G., Tamizhmani, T., Prabhakaran, S.G., and Jayarama, S., Screening and evaluation of lectin and anti-cancer activity from the phloem exudate/Sap of the indian dietary ethnomedicinal plants, Pharmacogn. J., 2019, vol. 11, no. 3, pp. 570–578.

    Article  CAS  Google Scholar 

  27. Afsar, T., Razak, S., Khan, M.R., Mawash, S., Almajwal, A., Shabir, M., and Haq, I.U., Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts, BMC Complementary Altern. Med., 2016, vol. 16, p. 258.

    Article  Google Scholar 

  28. Fani, S., Kamalidehghan, B., Lo, K.M., Hashim, N.M., Chow, K.M., and Ahmadipour, F., Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells, Drug Des. Dev. Ther., 2015, vol. 9, pp. 6191–6201.

    Article  CAS  Google Scholar 

  29. Kakde, D., Jain, D., Shrivastava, V., Kakde, R., and Patil, A.T., Cancer therapeutics-opportunities, challenges and advances in drug delivery, J. Appl. Pharm. Sci., 2011, vol. 1, no. 9, pp. 1–10.

    Google Scholar 

  30. Chen, J., Zhou, M., Zhang, Q., Xu, J., and Ouyang, J., Anticancer effect and apoptosis induction of gambogic acid in human leukemia cell line K562 in vitro, Med. Sci. Monit., 2015, vol. 21, pp. 1604–1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Greco, I., Molchanova, N., Holmedal, E., Jenssen, H., Hummel, B.D., Watts, J.L., Håkansson, J., Hansen, P.R., and Svenson, J., Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides, Sci. Rep., 2020, vol. 10, no. 1, p. 13206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Róka, E., Ujhelyi, Z., Deli, M., Bocsik, A., Fenyvesi, É., Szente, L., Fenyvesi, F., Vecsernyés, M., Váradi, J., Fehér, P., Gesztelyi, R., Félix, C., Perret, F., and Bácskay, I.K., Evaluation of the cytotoxicity of α‑cyclodextrin derivatives on the Caco-2 cell line and human erythrocytes, Molecules, 2015, vol. 20, no. 11, pp. 20269–20285.

    Article  PubMed  PubMed Central  Google Scholar 

  33. D’Alessandro, A., Editorial: Rising stars in red blood cell physiology, Front Physiol., 2022, vol. 13, p. 1020144.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gurunathan, S., Han, J.W., Eppakayala, V., Jeyaraj, M., and Kim, J.H., Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells, Biomed. Res. Int., 2013, vol. 2013, p. 535796.

    PubMed  PubMed Central  Google Scholar 

  35. Asirvatham, R., Christina, A.J.M., and Murali, A., In vitro antioxidant and anticancer activity studies on Drosera indica L. (Droseraceae), Adv. Pharm. Bull., 2013, vol. 3, no. 1, pp. 115–120.

    PubMed  PubMed Central  Google Scholar 

  36. van Zoggel, H., Carpentier, G., Dos Santos, C., Hamma-Kourbali, Y., Courty, J., Amiche, M., and Delbé, J., Antitumor and angiostatic activities of the antimicrobial peptide Dermaseptin B2, PLoS One, 2012, vol. 7, no. 9, p. e44351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Kadkhodaei Elyaderani.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

Statement on the Welfare of Humans or Animals. This article does not contain any studies involving humans or animals performed by the author.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadkhodaei Elyaderani, P., Asgharian, A.M. & Salehi, M. Research on the Effect of Amino Acid Substitution of Cyclosaplin Peptide in Breast Cancer Cell Line (MDA-MB-231) and in a Human Leukemia Cell Line (K562). Moscow Univ. Biol.Sci. Bull. 77, 264–271 (2022). https://doi.org/10.3103/S0096392522040101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392522040101

Keywords:

Abbreviations:

Navigation