Skip to main content
Log in

Role of galectin-3 in vascular calcification

  • Mini Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Vascular calcification is an abnormal process in which bone specific hydroxyapatite crystals are actively deposited on the vascular wall mediated by phenotypic differentiated smooth muscle cells and other mesenchymal cells under various pathological conditions. It is one of the important characteristics in the occurrence and development of atherosclerosis, prevalent in patients with type 2 diabetes and advanced chronic kidney disease, especially those requiring maintenance hemodialysis, with severely threatening human health. Previous studies have shown that the early diagnosis and control of vascular calcification is of great significance for cardiovascular risk stratification, prevention of acute cardiovascular events, which can greatly improve the prognosis and quality of life of patients. Galectins are a family of lectin superfamily. It is widely distributed in various animals and plays an important role in many physiological and pathological processes, such as cell adhesion, apoptosis, inflammatory response, tumor metastasis and so on. Many biomarker-and association-related studies and Preclinical-mechanistic studies have suggested that galactose-specific lectin-3 (galectin-3) plays an important role in vascular calcification and vascular intimal calcification (VIC) calcification induced by Wnt/βcatenin signaling pathway, NF-κB signaling pathway and ERK1/2 signaling pathway. This paper mainly expounds the role and mechanism of galectin-3 in vascular calcification under different pathological conditions including atherosclerosis, diabetes and chronic kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AAC:

Abdominal aortic calcification

AVs:

Aortic valves

BMC:

Bone marrow cell

CAD:

Coronary artery disease

CCS:

Chronic coronary syndrome

CTD:

Carboxyl terminal domain

ECM:

Extracellular matrix

ESRD:

End-stage renal disease

EVs:

Extracellular vesicles

GLDs:

Glucose and lipid metabolism disorders

MCP:

Modified citrus pectin

MHD:

Maintenance hemodialysis

MMP:

Matrix metalloproteinase

ND:

N-terminal domain

TXNIP:

Thioredoxin-interacting protein

VIC:

Vascular intimal calcification

VICS:

Valve stromal cells

VMC:

Vascular medial calcification

WT:

Wild-type

References

  1. Lee, S.J., Lee, I.K., Jeon, J.H.: Vascular calcification-new insights into its mechanism. Int. J. Mol. Sci. 21(8) (2020)

  2. Ibarrola, J., Martínez-Martínez, E., Sádaba, J.R., Arrieta, V., García-Peña, A., Álvarez, V., et al.: Beneficial effects of galectin-3 blockade in vascular and aortic valve alterations in an experimental pressure overload model. Int. J. Mol. Sci. 18(8) (2017)

  3. Ozturk, D., Celik, O., Satilmis, S., Aslan, S., Erturk, M., Cakmak, H.A., et al.: Association between serum galectin-3 levels and coronary atherosclerosis and plaque burden/structure in patients with type 2 diabetes mellitus. Coron. Artery Dis. 26(5), 396–401 (2015)

    Article  PubMed  Google Scholar 

  4. Sádaba, J.R., Martínez-Martínez, E., Arrieta, V., Álvarez, V., Fernández-Celis, A., Ibarrola, J., et al.: Role for galectin-3 in calcific aortic valve stenosis. J. Am. Heart Assoc. 5(11) (2016)

  5. Menini, S., Iacobini, C., Ricci, C., Blasetti Fantauzzi, C., Salvi, L., Pesce, C.M., et al.: The galectin-3/RAGE dyad modulates vascular osteogenesis in atherosclerosis. Cardiovasc. Res. 100(3), 472–480 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. Luo, J., Wang, S., Liu, X., Zheng, Q., Wang, Z., Huang, Y., et al.: Galectin-3 promotes calcification of human aortic valve interstitial cells via the NF-kappa B signaling pathway. Cardiovasc. Diagn. Ther. 12(2), 196–207 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ho, M.K.: Springer TA. Mac-2, a novel 32,000 Mr mouse macrophage subpopulation-specific antigen defined by monoclonal antibodies. J. Immunol. (Baltimore, Md : 1950). 128(3), 1221–8 (1982)

  8. Cowles, E.A., Agrwal, N., Anderson, R.L., Wang, J.L.: Carbohydrate-binding protein 35. Isoelectric points of the polypeptide and a phosphorylated derivative. J. Biol. Chem. 265(29), 17706–12 (1990)

  9. Dong, R., Zhang, M., Hu, Q., Zheng, S., Soh, A., Zheng, Y., et al.: Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review). Int. J. Mol. Med. 41(2), 599–614 (2018)

    CAS  PubMed  Google Scholar 

  10. Pugliese, G., Iacobini, C., Ricci, C., Blasetti Fantauzzi, C., Menini, S.: Galectin-3 in diabetic patients. Clin. Chem. Lab. Med. 52(10), 1413–1423 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. Newlaczyl, A.U., Yu, L.G.: Galectin-3–a jack-of-all-trades in cancer. Cancer Lett. 313(2), 123–128 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Cano-Megías, M., Bouarich, H., Guisado-Vasco, P., Pérez Fernández, M., de Arriba-de la Fuente, G., Álvarez-Sanz, C., et al.: Coronary artery calcification in patients with diabetes mellitus and advanced chronic kidney disease. Endocrinol. Diabetes Nutr. 66(5), 297–304 (2019)

  13. Yahagi, K., Kolodgie, F.D., Lutter, C., Mori, H., Romero, M.E., Finn, A.V., et al.: Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 37(2), 191–204 (2017)

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, L., Sun, H., Liu, S., Gao, J., Xia, J.: Glycemic variability is associated with vascular calcification by the markers of endoplasmic reticulum stress-related apoptosis, Wnt1, galectin-3 and BMP-2. Diabetol. Metab. Syndr. 11, 67 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Disthabanchong, S., Srisuwarn, P.: Mechanisms of vascular calcification in kidney disease. Adv. Chronic Kidney Dis. 26(6), 417–426 (2019)

    Article  PubMed  Google Scholar 

  16. Wu, M., Rementer, C., Giachelli, C.M.: Vascular calcification: an update on mechanisms and challenges in treatment. Calcif. Tissue Int. 93(4), 365–373 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun, Z., Zhang, L., Li, L., Shao, C., Liu, J., Zhou, M., et al.: Galectin-3 mediates cardiac remodeling caused by impaired glucose and lipid metabolism through inhibiting two pathways of activating Akt. Am. J. Physiol. Heart Circ. Physiol. 320(1), H364–H380 (2021)

    Article  CAS  PubMed  Google Scholar 

  18. Langley, S.R., Willeit, K., Didangelos, A., Matic, L.P., Skroblin, P., Barallobre-Barreiro, J., et al.: Extracellular matrix proteomics identifies molecular signature of symptomatic carotid plaques. J. Clin. Investig. 127(4), 1546–1560 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Papaspyridonos, M., McNeill, E., de Bono, J.P., Smith, A., Burnand, K.G., Channon, K.M., et al.: Galectin-3 is an amplifier of inflammation in atherosclerotic plaque progression through macrophage activation and monocyte chemoattraction. Arterioscler. Thromb. Vasc. Biol. 28(3), 433–440 (2008)

    Article  CAS  PubMed  Google Scholar 

  20. Nachtigal, M., Al-Assaad, Z., Mayer, E.P., Kim, K., Monsigny, M.: Galectin-3 expression in human atherosclerotic lesions. Am. J. Pathol. 152(5), 1199–1208 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Iacobini, C., Blasetti Fantauzzi, C., Bedini, R., Pecci, R., Bartolazzi, A., Amadio, B., et al.: Galectin-3 is essential for proper bone cell differentiation and activity, bone remodeling and biomechanical competence in mice. Metab. Clin. Exp. 83, 149–58 (2018)

  22. Lisowska, A., Knapp, M., Tycińska, A., Motybel, E., Kamiński, K., Święcki, P., et al.: Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: A mid-term prospective cohort study. Atherosclerosis 246, 309–317 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. Falcone, C., Lucibello, S., Mazzucchelli, I., Bozzini, S., D’Angelo, A., Schirinzi, S., et al.: Galectin-3 plasma levels and coronary artery disease: a new possible biomarker of acute coronary syndrome. Int. J. Immunopathol. Pharmacol. 24(4), 905–913 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. Sun, Z., Wang, Z., Li, L., Yan, J., Shao, C., Bao, Z., et al.: RAGE/galectin-3 yields intraplaque calcification transformation via sortilin. Acta Diabetol. 56(4), 457–472 (2019)

    Article  CAS  PubMed  Google Scholar 

  25. Kadoglou, N.P., Sfyroeras, G.S., Spathis, A., Gkekas, C., Gastounioti, A., Mantas, G., et al.: Galectin-3, carotid plaque vulnerability, and potential effects of statin therapy. Eur. J. Vasc. Endovasc. Surg. 49(1), 4–9 (2015)

    Article  CAS  PubMed  Google Scholar 

  26. Jing, L., Li, L., Ren, X., Sun, Z., Bao, Z., Yuan, G., et al.: Role of sortilin and matrix vesicles in Nε-Carboxymethyl-Lysine-Induced diabetic atherosclerotic calcification. Diabet. Metab. Synd. Ob. 13, 4141–4151 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. Mori, H., Torii, S., Kutyna, M., Sakamoto, A., Finn, A.V., Virmani, R.: Coronary artery calcification and its progression: What does it really mean? JACC Cardiovasc. Imaging 11(1), 127–142 (2018)

    Article  PubMed  Google Scholar 

  28. Tian, L., Wang, Y., Zhang, R.: Galectin-3 induces vascular smooth muscle cells calcification via AMPK/TXNIP pathway. Aging 14(12), 5086–5096 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kalantar-Zadeh, K., Jafar, T.H., Nitsch, D., Neuen, B.L., Perkovic, V.: Chronic kidney disease. Lancet (London, England). 398(10302), 786–802 (2021)

    Article  CAS  PubMed  Google Scholar 

  30. Desmedt, V., Desmedt, S., Delanghe, J.R., Speeckaert, R., Speeckaert, M.M.: Galectin-3 in renal pathology: More than just an innocent bystander. Am. J. Nephrol. 43(5), 305–317 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Boutin, L., Depret, F., Gayat, E., Legrand, M., Chadjichristos, C.E.: Galectin-3 in kidney diseases: from an old protein to a new therapeutic target. Int. J. Mol. Sci. 23(6) (2022)

  32. Chen, T.K., Knicely, D.H., Grams, M.E.: Chronic kidney disease diagnosis and management: A review. JAMA 322(13), 1294–1304 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Drechsler, C., Delgado, G., Wanner, C., Blouin, K., Pilz, S., Tomaschitz, A., et al.: Galectin-3, renal function, and clinical outcomes: Results from the LURIC and 4D Studies. J. Am. Soc. Nephrol. 26(9), 2213–2221 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, Z., Chen, Z., Ma, X., Yu, H., Chen, X.: The predictive value of serum galectin 3 for abdominal aortic calcification in maintenance hemodialysis patients: A prospective cohort study. Hemodialysis international International Symposium on Home Hemodialysis. 24(2), 212–220 (2020)

    Article  PubMed  Google Scholar 

  35. Zhang, Q., Yin, K., Ni, Z.: Galectin-3 and abdominal aortic calcification in patients on hemodialysis. Vascular medicine (London, England). 25(6), 575–576 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Tumlin, J.A., Costanzo, M.R., Chawla, L.S., Herzog, C.A., Kellum, J.A., McCullough, P.A., et al.: Cardiorenal syndrome type 4: insights on clinical presentation and pathophysiology from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI). Contrib. Nephrol. 182, 158–173 (2013)

    Article  PubMed  Google Scholar 

  37. Iseri, K., Dai, L., Chen, Z., Qureshi, A.R., Brismar, T.B., Stenvinkel, P., et al.: Bone mineral density and mortality in end-stage renal disease patients. Clin. Kidney J. 13(3), 307–321 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lanzer, P., Boehm, M., Sorribas, V., Thiriet, M., Janzen, J., Zeller, T., et al.: Medial vascular calcification revisited: review and perspectives. Eur. Heart J. 35(23), 1515–1525 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang, Z., Jiang, Y., Liu, N., Ren, L., Zhu, Y., An, Y., et al.: Advanced glycation end-product Nε-carboxymethyl-Lysine accelerates progression of atherosclerotic calcification in diabetes. Atherosclerosis 221(2), 387–396 (2012)

    Article  CAS  PubMed  Google Scholar 

  40. Gu, W., Wang, Z., Sun, Z., Bao, Z., Zhang, L., Geng, Y., et al.: Role of NFATc1 in the bone-vascular axis calcification paradox. J. Cardiovasc. Pharmacol. 75(3), 200–207 (2020)

    CAS  PubMed  Google Scholar 

  41. Aksan, G., Gedikli, Ö., Keskin, K., Nar, G., İnci, S., Yıldız, S.S., et al.: Is galectin-3 a biomarker, a player-or both-in the presence of coronary atherosclerosis? Journal of investigative medicine : the official publication of the American Federation for Clinical Research. 64(3), 764–770 (2016)

    Article  PubMed  Google Scholar 

  42. MacKinnon, A.C., Liu, X., Hadoke, P.W., Miller, M.R., Newby, D.E., Sethi, T.: Inhibition of galectin-3 reduces atherosclerosis in apolipoprotein E-deficient mice. Glycobiology 23(6), 654–663 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Święcki, P., Sawicki, R., Knapp, M., Kamiński, K.A., Ptaszyńska-Kopczyńska, K., Sobkowicz, B., et al.: Galectin-3 as the prognostic factor of adverse cardiovascular events in long-term follow up in patients after myocardial infarction-a pilot study. J. Clin. Med. 9(6) (2020)

  44. Martín-Reyes, R., Franco-Peláez, J.A., Lorenzo, Ó., González-Casaus, M.L., Pello, A.M., Aceña, Á., et al.: Plasma levels of monocyte chemoattractant protein-1, n-Terminal Fragment of brain natriuretic peptide and calcidiol are independently associated with the complexity of coronary artery disease. PLoS ONE 11(5), e0152816 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  45. Oyenuga, A., Folsom, A.R., Fashanu, O., Aguilar, D., Ballantyne, C.M.: Plasma galectin-3 and sonographic measures of carotid atherosclerosis in the atherosclerosis risk in communities study. Angiology 70(1), 47–55 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Varasteh, Z., De Rose, F., Mohanta, S., Li, Y., Zhang, X., Miritsch, B., et al.: Imaging atherosclerotic plaques by targeting Galectin-3 and activated macrophages using ((89)Zr)-DFO- Galectin3-F(ab’)(2) mAb. Theranostics. 11(4), 1864–1876 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported as follows the National Natural Science Foundation of China (82070455); Jiangsu Provincial Health Commission Project (M2020016); the Open Project Program of Guangxi Key Laboratory of Centre of Diabetic Systems Medicine (GKLCDSM-20210101–02); Postgraduate Research&Practice Innovation Program of Jiangsu Province (KYCX20_3051).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and wrote the review, critically reviewed all parts of the manuscript, accepted its final version prior to submission, and account for its content.

Corresponding author

Correspondence to Lihua Li.

Ethics declarations

Conflicts of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Sun, Z., Shao, C. et al. Role of galectin-3 in vascular calcification. Glycoconj J 40, 149–158 (2023). https://doi.org/10.1007/s10719-023-10106-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10106-x

Keywords

Navigation