Skip to main content
Log in

Clinical features of CNOT3-associated neurodevelopmental disorder in three Chinese patients

  • Original Article
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

CNOT3 is the central component of the CCR4-NOT protein complex, which is a global regulator of RNA polymerase II transcription. Loss of function mutations in CNOT3 lead to intellectual developmental disorder with speech delay, autism, and dysmorphic facies (IDDSADF), which is very rare. Herein, we reported two novel heterozygous frameshift mutations (c.1058_1059insT and c.724delT) and one novel splice site variant (c.387 + 2 T > C) in CNOT3 (NM_014516.3) gene in three Chinese patients with dysmorphic features, developmental delay, and behavior anomalies. The functional study showed that the CNOT3 mRNA levels were significantly decreased in the peripheral blood of two patients with c.1058_1059insT and c.387 + 2 T > C variants, respectively, and minigene assay demonstrated that the splice variant (c.387 + 2 T > C) resulted in exon skipping. We also found that CNOT3 deficiency was linked to alterations of expression levels of other CCR4-NOT complex subunits in mRNA level in the peripheral blood. By analyzing the clinical manifestations of all these patients with CNOT3 variants, including our three cases and 22 patients previously reported, we did not observe a correlation between genotypes and phenotypes. In summary, this is the first time to report cases with IDDSADF in the Chinese population, and three novel CNOT3 variants in these patients expand its mutational spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data are available upon reasonable request from the authors.

References

  1. de Ligt J, Willemsen MH, van Bon BW et al (2012) Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med 367(20):1921–1929. https://doi.org/10.1056/NEJMoa1206524

    Article  CAS  PubMed  Google Scholar 

  2. Rauch A, Wieczorek D, Graf E et al (2012) Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380(9854):1674–1682. https://doi.org/10.1016/S0140-6736(12)61480-9

    Article  CAS  PubMed  Google Scholar 

  3. Boland A, Chen Y, Raisch T et al (2013) Structure and assembly of the NOT module of the human CCR4-NOT complex. Nat Struct Mol Biol 20(11):1289–1297. https://doi.org/10.1038/nsmb.2681

    Article  CAS  PubMed  Google Scholar 

  4. Zheng X, Yang P, Lackford B et al (2016) CNOT3-dependent mRNA deadenylation safeguards the pluripotent state. Stem Cell Reports 7(5):897–910. https://doi.org/10.1016/j.stemcr.2016.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cejas P, Cavazza A, Yandava CN et al (2017) Transcriptional regulator CNOT3 defines an aggressive colorectal cancer subtype. Cancer Res 77(3):766–779. https://doi.org/10.1158/0008-5472.CAN-16-1346

    Article  CAS  PubMed  Google Scholar 

  6. De Keersmaecker K, Atak ZK, Li N et al (2013) Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia. Nat Genet 45(2):186–190. https://doi.org/10.1038/ng.2508

    Article  CAS  PubMed  Google Scholar 

  7. Martin R, Splitt M, Genevieve D et al (2019) De novo variants in CNOT3 cause a variable neurodevelopmental disorder. Eur J Hum Genet 27(11):1677–1682. https://doi.org/10.1038/s41431-019-0413-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Priolo M, Radio FC, Pizzi S et al (2021) Co-occurring heterozygous CNOT3 and SMAD6 truncating variants: unusual presentation and refinement of the IDDSADF phenotype. Genes (Basel) 12(7):1009. https://doi.org/10.3390/genes12071009

  9. Meyer R, Begemann M, Demuth S et al (2020) Inherited cases of CNOT3-associated intellectual developmental disorder with speech delay, autism, and dysmorphic facies. Clin Genet 98(4):408–412. https://doi.org/10.1111/cge.13819

    Article  CAS  PubMed  Google Scholar 

  10. Kruk JA, Dutta A, Fu J, Gilmour DS, Reese JC (2011) The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev 25(6):581–593. https://doi.org/10.1101/gad.2020911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou B, Liu J, Ren Z et al (2017) Cnot3 enhances human embryonic cardiomyocyte proliferation by promoting cell cycle inhibitor mRNA degradation. Sci Rep 7(1):1500. https://doi.org/10.1038/s41598-017-01628-0

  12. Delacruz RGC, Sandoval IT, Chang K et al (2019) Functional characterization of CNOT3 variants identified in familial adenomatous polyposis adenomas. Oncotarget 10(39):3939–3951. https://doi.org/10.18632/oncotarget.27003

  13. Collart MA, Panasenko OO (2012) The Ccr4–not complex. Gene 492(1):42–53. https://doi.org/10.1016/j.gene.2011.09.033

    Article  CAS  PubMed  Google Scholar 

  14. Jing L, Zhai ME, Cui J et al (2019) CNOT3 contributes to cisplatin resistance in lung cancer through inhibiting RIPK3 expression. Apoptosis 24(7–8):673–685. https://doi.org/10.1007/s10495-019-01550-y

    Article  PubMed  Google Scholar 

  15. Borras E, San Lucas FA, Chang K et al (2016) Genomic landscape of colorectal mucosa and adenomas. Cancer Prev Res (Phila) 9(6):417–427. https://doi.org/10.1158/1940-6207.CAPR-16-0081

    Article  CAS  PubMed  Google Scholar 

  16. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43(Database issue):D805–D811. https://doi.org/10.1093/nar/gku1075

    Article  CAS  PubMed  Google Scholar 

  17. Lek M, Karczewski KJ, Minikel EV et al (2016) Analysis of protein-coding genetic variation in 60,706 humans. Nat 536(7616):285–291. https://doi.org/10.1038/nature19057

    Article  CAS  Google Scholar 

  18. Neely GG, Kuba K, Cammarato A et al (2010) A global in vivo Drosophila RNAi screen identifies NOT3 as a conserved regulator of heart function. Cell 141(1):142–153. https://doi.org/10.1016/j.cell.2010.02.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suzuki T, Kikuguchi C, Sharma S et al (2015) CNOT3 suppression promotes necroptosis by stabilizing mRNAs for cell death-inducing proteins. Sci Rep 5:14779. https://doi.org/10.1038/srep14779

  20. Bartlam M, Yamamoto T (2010) The structural basis for deadenylation by the CCR4-NOT complex. Protein Cell 1(5):443–452. https://doi.org/10.1007/s13238-010-0060-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ito K, Takahashi A, Morita M, Suzuki T, Yamamoto T (2011) The role of the CNOT1 subunit of the CCR4-NOT complex in mRNA deadenylation and cell viability. Protein Cell 2(9):755–763. https://doi.org/10.1007/s13238-011-1092-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ito K, Inoue T, Yokoyama K, Morita M, Suzuki T, Yamamoto T (2011) CNOT2 depletion disrupts and inhibits the CCR4-NOT deadenylase complex and induces apoptotic cell death. Genes Cells 16(4):368–379. https://doi.org/10.1111/j.1365-2443.2011.01492.x

    Article  CAS  PubMed  Google Scholar 

  23. Yamaguchi T, Suzuki T, Sato T et al (2018) The CCR4-NOT deadenylase complex controls Atg7-dependent cell death and heart function. Sci Signal 11(516):eaan3638. https://doi.org/10.1126/scisignal.aan3638

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the patients participating in this study.

Funding

This work was supported by the grants of the Wuhan Municipal Health Commission (no. WX19C19 and WX16C13), the Construction Project of Clinical Medical Research Center for Neurodevelopment Disorders in Children in Hubei Province (no. HST2020-19), the Wuhan Children’s Imaging Clinical Medical Research Center (no. WK2022-38), the Wuhan Children’s Neurological Disease Clinical Medical Research Center (no. WK2014-160), and the Construction Project of Clinical Medical Research Center for Neurodevelopmental Disorders in Children in Hubei Province (no. HST2020-19).

Author information

Authors and Affiliations

Authors

Contributions

Study concepts: Xuelian He, Peiwei Zhao, and Hongmin Zhu.

Study design: Peiwei Zhao, Qingjie Meng, and Tao Lei.

Literature research: Lei Zhang, Qingjie Meng, and Li Tan.

Clinical information collection: Xiankai Zhang, Li Tan, Lei Zhang, and Tao Lei.

Data analysis/interpretation: Peiwei Zhao, Qingjie Meng, and Xiankai Zhang.

Manuscript preparation: Xuelian He and Peiwei Zhao.

Manuscript editing: Xuelian He and Hongmin Zhu.

Manuscript revision/review: Xuelian He and Peiwei Zhao.

Corresponding authors

Correspondence to Hongmin Zhu or Xuelian He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, P., Meng, Q., Wan, C. et al. Clinical features of CNOT3-associated neurodevelopmental disorder in three Chinese patients. Neurogenetics 24, 129–136 (2023). https://doi.org/10.1007/s10048-023-00713-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-023-00713-z

Keywords

Navigation