Skip to main content
Log in

Conversion of CO2 to Light Hydrocarbons by Using FeCx Catalysts Derived from Iron Nitrate Co-pyrolyzing with Melamine, Bulk g-C3N4, or Defective g-C3N4

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

FeCx catalysts (Fe-CN-Py) were synthesized by co-pyrolyzing the mixture of iron nitrate and a CN source (melamine, bulk g-C3N4 (b-C3N4), or defective g-C3N4 (d-C3N4)). The physicochemical properties of Fe-CN-Py catalysts and their activities of CO2 hydrogenation to light hydrocarbon (C2-C6) were analyzed. The results indicated that Fe-d-C3N4-(0.3)-Py is the most promising with the highest CO2 conversion (47.2%), olefin yield (10.8%), and olefin space-time yield (STY = 4.5 µmol olefin/s/gFe). The promising activity of Fe-d-C3N4-(0.3)-Py was attributed to its high concentration of surface FeCx. The correlation between surface FeCx and the STY of hydrocarbons and olefins was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eskander SMSU, Fankhauser S (2020) Reduction in greenhouse gas emissions from national climate legislation. Nat Clim Change 10(8):750–756. https://doi.org/10.1038/s41558-020-0831-z

    Article  CAS  Google Scholar 

  2. Yang Z, Qi Y, Wang F, Han Z, Jiang Y, Han H, Liu J, Zhang X, Ong WJ (2020) State-of-the-art advancements in photo-assisted CO2 hydrogenation: recent progress in catalyst development and reaction mechanisms. J Mater Chem A 8(47):24868–24894. https://doi.org/10.1039/D0TA08781E

    Article  CAS  Google Scholar 

  3. Albero J, Peng Y, García H (2020) Photocatalytic CO2 reduction to C2+ products. ACS Catal 10(10):5734–5749. https://doi.org/10.1021/acscatal.0c00478

    Article  CAS  Google Scholar 

  4. Hasan MMF, Rossi LM, Debecker DP, Leonard KC, Li Z, Makhubela BCE, Zhao C, Kleij A (2021) Can CO2 and renewable carbon be primary resources for sustainable fuels and chemicals? ACS Sustain Chem Eng 9(37):12427–12430. https://doi.org/10.1021/acssuschemeng.1c06008

    Article  CAS  Google Scholar 

  5. Alkhatib II, Garlisi C, Pagliaro M, Al-Ali K, Palmisano G (2020) Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: a review of strategies and applications. Catal Today 340:209–224. https://doi.org/10.1016/j.cattod.2018.09.032

    Article  CAS  Google Scholar 

  6. Tackett BM, Gomez E, Chen JG (2019) Net reduction of CO2 via its thermocatalytic and electrocatalytic transformation reactions in standard and hybrid processes. Nat Catal 2(5):381–386. https://doi.org/10.1038/s41929-019-0266-y

    Article  CAS  Google Scholar 

  7. Jiang X, Nie X, Guo X, Song C, Chen JG (2020) Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev 120(15):7984–8034. https://doi.org/10.1021/acs.chemrev.9b00723

    Article  CAS  PubMed  Google Scholar 

  8. Kondratenko EV, Mul G, Baltrusaitis J, Larrazábal GO, Pérez-Ramírez J (2013) Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ Sci 6(11):3112–3135. https://doi.org/10.1039/C3EE41272E

    Article  CAS  Google Scholar 

  9. Niu J, Liu H, Jin Y, Fan B, Qi W, Ran J (2022) Comprehensive review of Cu-based CO2 hydrogenation to CH3OH: insights from experimental work and theoretical analysis. Int J Hydrogen Energy 47(15):9183–9200. https://doi.org/10.1016/j.ijhydene.2022.01.021

    Article  CAS  Google Scholar 

  10. Ding Z, Xu Y, Yang Q, Hou R (2022) Pd-modified CuO–ZnO–ZrO2 catalysts for CH3OH synthesis from CO2 hydrogenation. Int J Hydrogen Energy 47(59):24750–24760. https://doi.org/10.1016/j.ijhydene.2022.05.226

    Article  CAS  Google Scholar 

  11. Li W, Wang H, Jiang X, Zhu J, Liu Z, Guo X, Song C (2018) A short review of recent advances in CO2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC Adv 8(14):7651–7669. https://doi.org/10.1039/c7ra13546g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sharma P, Sebastian J, Ghosh S, Creaser D, Olsson L (2021) Recent advances in hydrogenation of CO2 into hydrocarbons via methanol intermediate over heterogeneous catalysts. Catal Sci Technol 11(5):1665–1697. https://doi.org/10.1039/D0CY01913E

    Article  CAS  Google Scholar 

  13. Ronda-Lloret M, Rothenberg G, Shiju NR (2019) A critical look at direct catalytic hydrogenation of carbon dioxide to olefins. Chemsuschem 12(17):3896–3914. https://doi.org/10.1002/cssc.201900915

    Article  CAS  PubMed  Google Scholar 

  14. Ye RP, Ding J, Gong W, Argyle MD, Zhong Q, Wang Y, Russell CK, Xu Z, Russell AG, Li Q, Fan M, Yao YG (2019) CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat Commun 10(1):5698. https://doi.org/10.1038/s41467-019-13638-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Yin H, Yu G, He S, Kang J, Liu Z, Cheng K, Zhang Q, Wang Y (2021) Selective hydrogenation of CO2 and CO into olefins over sodium- and zinc-promoted iron carbide catalysts. J Catal 395:350–361. https://doi.org/10.1016/j.jcat.2021.01.036

    Article  CAS  Google Scholar 

  16. Peña D, Jensen L, Cognigni A, Myrstad R, Neumayer T, van Beek W, Rønning M (2018) The effect of copper loading on iron carbide formation and surface species in iron-based Fischer–Tropsch synthesis catalysts. ChemCatChem 10(6):1300–1312. https://doi.org/10.1002/cctc.201701673

  17. Numpilai T, Chanlek N, Poo-Arporn Y, Cheng CK, Siri-Nguan N, Sornchamni T, Chareonpanich M, Kongkachuichay P, Yigit N, Rupprechter G, Limtrakul J, Witoon T (2020) Tuning interactions of surface-adsorbed species over Fe – Co/K – Al2O3 catalyst by different K contents: selective CO2 hydrogenation to light olefins. ChemCatChem 12(12):3306–3320. https://doi.org/10.1002/cctc.202000347

    Article  CAS  Google Scholar 

  18. Witoon T, Numpilai T, Nueangnoraj K, Cheng CK, Chareonpanich M, Limtrakul J (2021) Light olefins synthesis from CO2 hydrogenation over mixed Fe–Co–K supported on micro-mesoporous carbon catalysts. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.10.265

    Article  Google Scholar 

  19. Taghavi S, Asghari A, Tavasoli A (2017) Enhancement of performance and stability of graphene nano sheets supported cobalt catalyst in Fischer–Tropsch synthesis using graphene functionalization. Chem Eng Res Des 119:198–208. https://doi.org/10.1016/j.cherd.2017.01.021

    Article  CAS  Google Scholar 

  20. Najari S, Gróf G, Saeidi S (2019) Enhancement of hydrogenation of CO2 to hydrocarbons via in-situ water removal. Int J Hydrogen Energy 44(45):24759–24781. https://doi.org/10.1016/j.ijhydene.2019.07.159

    Article  CAS  Google Scholar 

  21. Wang J, Wang S (2022) A critical review on graphitic carbon nitride (g-C3N4)-based materials: Preparation, modification and environmental application. Coord Chem Rev 453:214338. https://doi.org/10.1016/j.ccr.2021.214338

    Article  CAS  Google Scholar 

  22. Zhang J, Yang B, Luo KH (2022) Unveiling the mechanism of controllable CO2 hydrogenation by group VIB metal single atom anchored on N-doped graphite: a density functional theory study. Int J Hydrogen Energy 47(97):40972–40985. https://doi.org/10.1016/j.ijhydene.2022.09.170

    Article  CAS  Google Scholar 

  23. Park H, Youn DH, Kim JY, Kim WY, Choi YH, Lee YH, Choi SH, Lee JS (2015) Selective formation of Hägg iron carbide with g-C3N4 as a sacrificial support for highly active Fischer–Tropsch synthesis. ChemCatChem 7(21):3488–3494. https://doi.org/10.1002/cctc.201500794

    Article  CAS  Google Scholar 

  24. Eissa AA, Peera SG, Kim NH, Lee JH (2019) g-C3N4 templated synthesis of the Fe3C@NSC electrocatalyst enriched with Fe–Nx active sites for efficient oxygen reduction reaction. J Mater Chem A 7(28):16920–16936. https://doi.org/10.1039/C9TA01837A

    Article  CAS  Google Scholar 

  25. Zhang B, Chen J, Guo H, Le M, Guo H, Li Z, Wang L (2021) Iron carbide nanoparticles supported by nitrogen-doped carbon nanosheets for oxygen reduction. ACS Appl Nano Mater 4(8):8360–8367. https://doi.org/10.1021/acsanm.1c01542

    Article  CAS  Google Scholar 

  26. Shen Y (2015) Carbothermal synthesis of metal-functionalized nanostructures for energy and environmental applications. J Mater Chem A 3(25):13114–13188. https://doi.org/10.1039/C5TA01228G

    Article  CAS  Google Scholar 

  27. Trangwachirachai K, Chen C-H, Huang A-L, Lee J-F, Chen C-L, Lin Y-C (2022) Conversion of methane to acetonitrile over GaN catalysts derived from gallium nitrate hydrate co-pyrolyzed with melamine, melem, or g-C3N4: the influence of nitrogen precursors. Catal Sci Technol 12(1):320–331. https://doi.org/10.1039/D1CY01362A

    Article  CAS  Google Scholar 

  28. Lin Y-C, Hsieh C-H (2022) Cobalt catalysts derived from layered double hydroxide/g-C3N4 composite in the hydrogenation of γ-valerolactone into 1,4-pentanediol. Catal Surv Asia. https://doi.org/10.1007/s10563-022-09383-7

    Article  Google Scholar 

  29. Gao J, Wang Y, Zhou S, Lin W, Kong Y (2017) A facile one-step synthesis of Fe-doped g-C3N4 nanosheets and their improved visible-light photocatalytic performance. ChemCatChem 9(9):1708–1715. https://doi.org/10.1002/cctc.201700492

    Article  CAS  Google Scholar 

  30. Wang C, Kang J, Liang P, Zhang H, Sun H, Tadé MO, Wang S (2017) Ferric carbide nanocrystals encapsulated in nitrogen-doped carbon nanotubes as an outstanding environmental catalyst. Environ Sci Nano 4(1):170–179. https://doi.org/10.1039/C6EN00397D

    Article  CAS  Google Scholar 

  31. Ghosh S, Ramaprabhu S (2019) Green synthesis of transition metal nanocrystals encapsulated into nitrogen-doped carbon nanotubes for efficient carbon dioxide capture. Carbon 141:692–703. https://doi.org/10.1016/j.carbon.2018.09.083

    Article  CAS  Google Scholar 

  32. Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12(4):537–541. https://doi.org/10.1107/S0909049505012719

    Article  CAS  PubMed  Google Scholar 

  33. Witoon T, Chaipraditgul N, Numpilai T, Lapkeatseree V, Ayodele BV, Cheng CK, Siri-Nguan N, Sornchamni T, Limtrakul J (2021) Highly active Fe-Co-Zn/K-Al2O3 catalysts for CO2 hydrogenation to light olefins. Chem Eng Sci 233:116428. https://doi.org/10.1016/j.ces.2020.116428

    Article  CAS  Google Scholar 

  34. Chen B-Y, Dobele G, Plavniece A, Volperts A, Tamasauskaite-Tamasiunaite L, Norkus E, Chen C-L, Lin Y-C (2023) Catalytic hydrogenation of CO2 to light olefins by using K-doped FeCx catalysts derived from the Fe-chitosan complex. Int J Hydrogen Energy 48:4276–4286. https://doi.org/10.1016/j.ijhydene.2022.11.010

    Article  CAS  Google Scholar 

  35. Li X, Zhang J, Shen L, Ma Y, Lei W, Cui Q, Zou G (2009) Preparation and characterization of graphitic carbon nitride through pyrolysis of melamine. Appl Phys A 94(2):387–392. https://doi.org/10.1007/s00339-008-4816-4

    Article  CAS  Google Scholar 

  36. Titantah JT, Lamoen D (2007) Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles. Diam Relat Mater 16(3):581–588. https://doi.org/10.1016/j.diamond.2006.11.048

    Article  CAS  Google Scholar 

  37. Wieczorek-Ciurowa K, Kozak AJ (1999) The thermal decomposition of Fe(NO3)3·9H2O. J Therm Anal Calorim 58(3):647–651. https://doi.org/10.1023/A:1010112814013

    Article  CAS  Google Scholar 

  38. Fang L, Ohfuji H, Shinmei T, Irifune T (2011) Experimental study on the stability of graphitic C3N4 under high pressure and high temperature. Diam Relat Mater 20(5):819–825. https://doi.org/10.1016/j.diamond.2011.03.034

    Article  CAS  Google Scholar 

  39. Tan H, Li Y, Kim J, Takei T, Wang Z, Xu X, Wang J, Bando Y, Kang Y-M, Tang J, Yamauchi Y (2018) Sub-50 nm iron–nitrogen-doped hollow carbon sphere-encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts. Adv Sci 5(7):1800120. https://doi.org/10.1002/advs.201800120

    Article  CAS  Google Scholar 

  40. Lewis IC (1982) Chemistry of carbonization. Carbon 20(6):519–529. https://doi.org/10.1016/0008-6223(82)90089-6

    Article  CAS  Google Scholar 

  41. Zhu J, Wang P, Zhang X, Zhang G, Li R, Li W, Senftle TP, Liu W, Wang J, Wang Y, Zhang A, Fu Q, Song C, Guo X (2022) Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation. Sci Adv 8(5):eabm3629. https://doi.org/10.1126/sciadv.abm3629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang W-J, Gu L, Li L, Zhang Y, Zhang X, Zhang L-J, Wang J-Q, Hu J-S, Wei Z, Wan L-J (2016) Understanding the high activity of Fe–N–C eectrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe–Nx. J Am Chem Soc 138(10):3570–3578. https://doi.org/10.1021/jacs.6b00757

    Article  CAS  PubMed  Google Scholar 

  43. An S, Zhang G, Wang T, Zhang W, Li K, Song C, Miller JT, Miao S, Wang J, Guo X (2018) High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes. ACS Nano 12(9):9441–9450. https://doi.org/10.1021/acsnano.8b04693

    Article  CAS  PubMed  Google Scholar 

  44. Peng H, Zhang M, Sun K, Xie X, Lei H, Ma G (2020) Nitrogen-doped carbon nanoflowers with in situ generated Fe3C embedded carbon nanotubes for efficient oxygen reduction electrocatalysts. Appl Surf Sci 529:147174. https://doi.org/10.1016/j.apsusc.2020.147174

    Article  CAS  Google Scholar 

  45. Schulte HJ, Graf B, Xia W, Muhler M (2012) Nitrogen- and oxygen-functionalized multiwalled carbon nanotubes used as support in iron-catalyzed, high-temperature Fischer–Tropsch synthesis. ChemCatChem 4(3):350–355. https://doi.org/10.1002/cctc.201100275

    Article  CAS  Google Scholar 

  46. Lu J, Yang L, Xu B, Wu Q, Zhang D, Yuan S, Zhai Y, Wang X, Fan Y, Hu Z (2014) Promotion effects of nitrogen doping into carbon nanotubes on supported iron Fischer–Tropsch catalysts for lower olefins. ACS Catal 4(2):613–621. https://doi.org/10.1021/cs400931z

    Article  CAS  Google Scholar 

  47. Chernyak SA, Stolbov DN, Ivanov AS, Klokov SV, Egorova TB, Maslakov KI, Eliseev OL, Maximov VV, Savilov SV, Lunin VV (2020) Effect of type and localization of nitrogen in graphene nanoflake support on structure and catalytic performance of Co-based Fischer-Tropsch catalysts. Catal Today 357:193–202. https://doi.org/10.1016/j.cattod.2019.02.044

    Article  CAS  Google Scholar 

  48. Saeidi S, Najari S, Gróf G, Gallucci F (2019) Effect of operating conditions and effectiveness factor on hydrogenation of CO2 to hydrocarbons. Int J Hydrogen Energy 44(54):28586–28602. https://doi.org/10.1016/j.ijhydene.2019.08.255

    Article  CAS  Google Scholar 

  49. Amoyal M, Vidruk-Nehemya R, Landau MV, Herskowitz M (2017) Effect of potassium on the active phases of Fe catalysts for carbon dioxide conversion to liquid fuels through hydrogenation. J Catal 348:29–39. https://doi.org/10.1016/j.jcat.2017.01.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology (Projects 109-2628-E-006-011-MY3, 110-2221-E-006-165-MY3, 110-2923-E-006-005-MY3, and 110-2927-I-006-506) and the Higher Education Sprout Project, Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University (NCKU). The authors also appreciate the use of an elemental analyzer (EA000600, MOST 110-2731-M-006-001) belonging to the Core Facility Center of National Cheng Kung University. English language editing by Ms. Jedy Prameswari was appreciated.

Author information

Authors and Affiliations

Authors

Contributions

DTT: Data curation; JCJ: Resources; MHT: Data curation; CHW: Data analysis and investigation; CWP: Resources and investigation; CLC: Resources, reviwing, and consulting; YCL: Resources, writing, reviewing and editing.

Corresponding authors

Correspondence to Chi-Liang Chen or Yu-Chuan Lin.

Ethics declarations

Competing Interests

The authors have no competing interests to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

To, DT., Juan, J.C., Tsai, MH. et al. Conversion of CO2 to Light Hydrocarbons by Using FeCx Catalysts Derived from Iron Nitrate Co-pyrolyzing with Melamine, Bulk g-C3N4, or Defective g-C3N4. Catal Surv Asia 27, 260–269 (2023). https://doi.org/10.1007/s10563-023-09391-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-023-09391-1

Keywords

Navigation