Skip to main content

Advertisement

Log in

Update on Central Nervous System Effects of HIV in Adolescents and Young Adults

  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review.

Behaviorally acquired (non-perinatal) HIV infection during adolescence and young adulthood occurs in the midst of key brain developmental processes such as frontal lobe neuronal pruning and myelination of white matter, but we know little about the effects of new infection and therapy on the developing brain.

Recent Findings

Adolescents and young adults account for a disproportionately high fraction of new HIV infections each year. Limited data exist regarding neurocognitive performance in this age group, but suggest impairment is at least as prevalent as in older adults, despite lower viremia, higher CD4 + T cell counts, and shorter durations of infection in adolescents/young adults. Neuroimaging and neuropathologic studies specific to this population are underway.

Summary

The full impact of HIV on brain growth and development in youth with behaviorally acquired HIV has yet to be determined; it must be investigated further to develop future targeted treatment and mitigation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. CDC. HIV in the United States by age. 2022. https://www.cdc.gov/hiv/group/age/youth/. Accessed 16 Sep 2022

  2. UNAIDS. Young people and HIV. https://www.unaids.org/sites/default/files/media_asset/young-people-and-hiv_en.pdf. Accessed 16 Sep 2022

  3. UNAIDS. Global HIV & AIDS statistics — fact sheet. 2022. https://www.unaids.org/en/resources/fact-sheet. Accessed 16 Sep 2022

  4. Slogrove AL, Sohn AH. The global epidemiology of adolescents living with HIV. Curr Opin Hiv Aids. 2018;13:170–8. Excellent 2018 review of adolescents living with HIV and burden of HIV on their health and mortality.

    Article  PubMed  PubMed Central  Google Scholar 

  5. CDC. Estimated HIV incidence and prevalence in the United States, 2015–2019. In: HIV Surveillance Supplemental Report. 2021;26(1). https://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-supplementalreport-vol-26-1.pdf. Accessed 23 Sep 2022.

  6. CDC. HIV diagnoses decline almost 20 percent, but progress is uneven. 2015. https://www.cdc.gov/nchhstp/newsroom/2015/nhpc-press-release-hiv-diagnoses.html. Accessed 23 Sep 2022.

  7. Schacker T, Collier AC, Hughes J, Shea T, Corey L. Clinical and epidemiologic features of primary HIV infection. Ann Intern Med. 1996;125:257–64.

    Article  CAS  PubMed  Google Scholar 

  8. Hellmuth J, Fletcher JLK, Valcour V, et al. Neurologic signs and symptoms frequently manifest in acute HIV infection. Neurology. 2016;87:148–54.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heaton RK, Clifford DB, Franklin DR, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75:2087–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci. 2007;8:33–44.

    Article  CAS  PubMed  Google Scholar 

  11. Ellis RJ, Deutsch R, Heaton RK, et al. Neurocognitive impairment is an independent risk factor for death in HIV infection. San Diego HIV Neurobehavioral Research Center Group. Arch Neurol. 1997;54:416–24.

    Article  CAS  PubMed  Google Scholar 

  12. McGuire JL, Barrett JS, Vezina HE, et al. Adjuvant therapies for HIV-associated neurocognitive disorders. Ann Clin Transl Neurol. 2014;1(11):938–952.

  13. Valcour V, Paul R, Chiao S, Wendelken LA, Miller B. Screening for cognitive impairment in human immunodeficiency virus. Clinical Infectious. 2011;53:836–42.

    Article  Google Scholar 

  14. Vivithanaporn P, Heo G, Gamble J, Krentz HB, Hoke A, Gill MJ, Power C. Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study. Neurology. 2010;75:1150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carey CL, Woods SP, Rippeth JD, Gonzalez R, Moore DJ, Marcotte TD, Grant I, Heaton RK, Group H. Initial validation of a screening battery for the detection of HIV-associated cognitive impairment. The Clin Neuropsychologist. 2004;18:234–48.

    Article  Google Scholar 

  16. Woods SP, Rippeth JD, Frol AB, et al. Interrater reliability of clinical ratings and neurocognitive diagnoses in HIV. J Clin Exp Neuropsychol. 2004;26:759–78.

    Article  PubMed  Google Scholar 

  17. McArthur JC, Steiner J, Sacktor N, Nath A. Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol. 2010;67:699–714.

    CAS  PubMed  Google Scholar 

  18. Antinori A, Arendt G, Becker JT, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69:1789–99. Summary of current HAND definitions and terminology.

    Article  CAS  PubMed  Google Scholar 

  19. Heaton RK, Franklin DR, Ellis RJ, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17:3–16.

    Article  CAS  PubMed  Google Scholar 

  20. Marra CM, Zhao Y, Clifford DB, et al. Impact of combination antiretroviral therapy on cerebrospinal fluid HIV RNA and neurocognitive performance. AIDS (London, England). 2009;23:1359–66.

    Article  PubMed  Google Scholar 

  21. Lindl KA, Marks DR, Kolson DL, Jordan-Sciutto KL. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. J Neuroimmune Pharmacol :The Official J Soc NeuroIm Pharmacol. 2010;5:294–309.

    Article  Google Scholar 

  22. Robertson KR, Smurzynski M, Parsons TD, Wu K, Bosch RJ, Wu J, McArthur JC, Collier AC, Evans SR, Ellis RJ. The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS (London, England). 2007;21:1915–21.

    Article  PubMed  Google Scholar 

  23. Cysique LA, Maruff P, Brew BJ. Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immunodeficiency syndrome (HIV/AIDS) patients across pre- and post-highly active antiretroviral therapy eras: a combined study of two cohorts. J Neurovirol. 2004;10:350–7.

    Article  PubMed  Google Scholar 

  24. Paul R, Cohen R, Navia B, Tashima K. Relationships between cognition and structural neuroimaging findings in adults with human immunodeficiency virus type-1. Neurosci Biobehav Rev. 2002;26:353–9.

    Article  PubMed  Google Scholar 

  25. Grant I, Franklin DR Jr, Deutsch R, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82(23):2055–62.

  26. Mccombe J, Vivithanaporn P, Gill M, Power C. Predictors of symptomatic HIV-associated neurocognitive disorders in universal health care. HIV Med. 2012. https://doi.org/10.1111/j.1468-1293.2012.01043.x.

    Article  PubMed  Google Scholar 

  27. Tan IL, McArthur JC. HIV-associated neurological disorders: a guide to pharmacotherapy. CNS Drugs. 2012;26:123–34.

    Article  PubMed  Google Scholar 

  28. Grant I, Franklin DR, Deutsch R, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82:2055–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McArthur JC, Brew BJ. HIV-associated neurocognitive disorders: is there a hidden epidemic? AIDS (London, England). 2010;24:1367–70.

    Article  PubMed  Google Scholar 

  30. Johnson TP, Nath A. Biotypes of HIV-associated neurocognitive disorders based on viral and immune pathogenesis. Curr Opin Infect Dis. 2022;35:223–30. Proposal to subtype patients with HANDN into biotypes based on viral and immune pathogenesis.

    Article  CAS  PubMed  Google Scholar 

  31. Rubin LH, Ances BM. Working HAND in HAND: central nervous system complications in people with human immunodeficiency virus. Clin Infect Dis. 2021;74:1314–1314.

    Article  Google Scholar 

  32. Nichols SL, Bethel J, Garvie PA, Patton DE, Thornton S, Kapogiannis BG, Ren W, Major-Wilson H, Puga A, Woods SP. Neurocognitive functioning in antiretroviral therapy-naïve youth with behaviorally acquired human immunodeficiency virus. The J Adoles Health : Official Public Soc Adolesc Med. 2013;53:763–71. One of only two published studies that examine cognition in adolescents and young adults with behaviorally acquired HIV: This paper describes 220 18-24-year-old HIV+ youth enrolled in a prospective study evaluating strategies of antiretroviral (ART) treatment initiation and use, with an estimated HAND prevalence of 65%.

    Article  Google Scholar 

  33. Baker LM, Paul RH, Heaps JM, Westerhaus E, Chang JY, Williams S, Brier MR, Plax K, Ances BM. Impact of human immunodeficiency virus on neurocognition and risky behaviors in young adults. J Neurovirol. 2014;20:466–73. The second of two published studies that examine cognition in adolescents and young adults with behaviorally acquired HIV: This study is a case control study of 23 HIV+ and 21 HIV-youth aged 18–24 years, where over half of HIV+ subjects performed below expectation in an executive function task.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Spudich S, Gisslen M, Hagberg L, et al. Central nervous system immune activation characterizes primary human immunodeficiency virus 1 infection even in participants with minimal cerebrospinal fluid viral burden. J Infect Dis. 2011;204:753–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Valcour V, Chalermchai T, Sailasuta N, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 2012;206:275–82. Excellent description of early HIV CNS invasion and related inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kolson DL. Neuropathogenesis of central nervous system HIV-1 infection. Clin Lab Med. 2002;22:703–17.

    Article  PubMed  Google Scholar 

  37. González-Scarano F, Martín-García J. The neuropathogenesis of AIDS. Nat Rev Immunol. 2005;5:69–81.

    Article  PubMed  Google Scholar 

  38. Angelovich TA, Churchill MJ, Wright EJ, Brew BJ. Neurocognitive complications of HIV-infection, neuropathogenesis to implications for clinical practice. Curr Top Behav Neurosci. 2020;50:3–39. Excellent overview of HIV neuropathogenesis and HAND.

    Article  Google Scholar 

  39. Farhadian S, Patel P, Spudich S. Neurological complications of HIV infection. Curr Infect Dis Rep. 2017;19:50. Very well written and complete overview of HIV neuropathogenesis, with a focus on recent important findings.

    Article  PubMed  PubMed Central  Google Scholar 

  40. McGuire JL, Goodkin K, Douglas SD. Neuropathogenesis of central nervous system HIV infection. Psychiatr Ann. 2013;43:212–6.

    Article  Google Scholar 

  41. McGuire JL, Douglas SD. Neuroimmune dysregulation in HIV-associated neurocognitive disorders. Psychiatr Ann. 2013;43:217–22.

    Article  Google Scholar 

  42. Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ, Marquie-Beck J, Navia B, Consortium HN. Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J Neurovirol. 2011;17:63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fischer-Smith T, Bell C, Croul S, Lewis M, Rappaport J. Monocyte/macrophage trafficking in acquired immunodeficiency syndrome encephalitis: lessons from human and nonhuman primate studies. J Neurovirol. 2008;14:318–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roth LM, Akay-Espinoza C, Grinspan JB, Jordan-Sciutto KL. HIV-induced neuroinflammation inhibits oligodendrocyte maturation via glutamate-dependent activation of the PERK arm of the integrated stress response. Glia. 2021;69:2252–71. Studies using an in vitro model of HIV infection, supernatant from HIV-infected macrophages, demonstrate that glutamate and other toxic products are released from infected macrophages and inhibit oligodendrocyte differentiation in vitro, at least partially via the integrated stress response.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burdo TH, Soulas C, Orzechowski K, Button J, Krishnan A, Sugimoto C, Alvarez X, Kuroda MJ, Williams KC. Increased monocyte turnover from bone marrow correlates with severity of SIV encephalitis and CD163 levels in plasma. PLoS Pathog. 2010;6:e1000842.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Tang X, Lu H, Ramratnam B. Neurotoxicity of HIV-1 Tat is attributed to its penetrating property. Sci Rep-uk. 2020;10:14002.

    Article  CAS  Google Scholar 

  47. Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, Jhamandas J, Power C. HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci. 2007;27:3703–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ulfhammer G, Edén A, Mellgren Å, Fuchs D, Zetterberg H, Hagberg L, Nilsson S, Yilmaz A, Gisslén M. Persistent central nervous system immune activation following more than 10 years of effective HIV antiretroviral treatment. AIDS. 2018;32:2171–8.

    Article  CAS  PubMed  Google Scholar 

  49. Krut JJ, Mellberg T, Price RW, Hagberg L, Fuchs D, Rosengren L, Nilsson S, Zetterberg H, Gisslen M. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients. PLoS ONE. 2014;9:e88591.

    Article  Google Scholar 

  50. Rubin LH, Sacktor N, Creighton J, Du Y, Endres CJ, Pomper MG, Coughlin JM. Microglial activation is inversely associated with cognition in individuals living with HIV on effective antiretroviral therapy. AIDS. 2018;32:1661–7.

    Article  PubMed  Google Scholar 

  51. Rubin LH, Maki PM, Springer G, et al. Cognitive trajectories over 4 years among HIV-infected women with optimal viral suppression. Neurology. 2017;89:1594–603.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Paul RH, Ernst T, Brickman AM, Yiannoutsos CT, Tate DF, Cohen RA, Navia BA, ACTG 301 team; ACTG 700 team; HIV MRS consortium. relative sensitivity of magnetic resonance spectroscopy and quantitative magnetic resonance imaging to cognitive function among nondemented individuals infected with HIV. J Int Neuropsych Soc. 2008;14:725–33.

    Article  Google Scholar 

  53. Ances BM, Ortega M, Vaida F, Heaps J. Paul R (2012) Independent effects of HIV, aging, and HAART on brain volumetric measures. J Acquir Immune Defic Syndr. 1999;59:469–77.

    Article  Google Scholar 

  54. Küper M, Rabe K, Esser S, Gizewski ER, Husstedt IW, Maschke M, Obermann M. Structural gray and white matter changes in patients with HIV. J Neurol. 2011;258:1066–75.

    Article  PubMed  Google Scholar 

  55. Chang L, Jiang C, Cunningham E, Buchthal S, Douet V, Andres M, Ernst T. Effects of APOE ε4, age, and HIV on glial metabolites and cognitive deficits. Neurology. 2014;82:2213–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Archibald SL, Masliah E, Fennema-Notestine C, et al. Correlation of in vivo neuroimaging abnormalities with postmortem human immunodeficiency virus encephalitis and dendritic loss. Arch Neurol. 2004;61:369–76.

    Article  PubMed  Google Scholar 

  57. Gelman BB. Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Curr HIV/AIDS Rep. 2015;12:272–9. Thoughtful examination of HIV neuropathophysiology in the context of cART.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Letendre S. Central nervous system complications in HIV disease: HIV-associated neurocognitive disorder. Topics in antiviral medicine. 2011;19:137–42.

    PubMed  Google Scholar 

  59. Masliah E, Heaton RK, Marcotte TD, et al. Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol. 1997;42:963–72.

    Article  CAS  PubMed  Google Scholar 

  60. Gelman BB, Lisinicchia JG, Morgello S, et al. Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr. 2013;62(5):487–95.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hoare J, Fouche J-P, Spottiswoode B, Joska JA, Schoeman R, Stein DJ, Carey PD. White matter correlates of apathy in HIV-positive subjects: a diffusion tensor imaging study. J Neuropsychiatry Clin Neurosci. 2010;22:313–20.

    Article  PubMed  Google Scholar 

  62. Gongvatana A, Cohen RA, Correia S, Devlin KN, Miles J, Kang H, Ombao H, Navia B, Laidlaw DH, Tashima KT. Clinical contributors to cerebral white matter integrity in HIV-infected individuals. J Neurovirol. 2011;17:477–86.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Langford TD, Letendre SL, Larrea GJ, Masliah E. Changing patterns in the neuropathogenesis of HIV during the HAART era. Brain Pathology (Zurich, Switzerland). 2003;13:195–210.

    Article  CAS  PubMed  Google Scholar 

  64. Müller-Oehring EM, Schulte T, Rosenbloom MJ, Pfefferbaum A, Sullivan EV. Callosal degradation in HIV-1 infection predicts hierarchical perception: a DTI study. Neuropsychologia. 2010;48:1133–43.

    Article  PubMed  Google Scholar 

  65. Rostasy K, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper TL, Hedreen JC, Navia BA. Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol. 1999;46:207–16.

    Article  CAS  PubMed  Google Scholar 

  66. Rostásy KM. Inflammation and neuroaxonal injury in multiple sclerosis and AIDS dementia complex: implications for neuroprotective treatment. Neuropediatrics. 2005;36:230–9.

    Article  PubMed  Google Scholar 

  67. Solomon IH, Chettimada S, Misra V, Lorenz DR, Gorelick RJ, Gelman BB, Morgello S, Gabuzda D. White matter abnormalities linked to interferon, stress response, and energy metabolism gene expression changes in older HIV-positive patients on antiretroviral therapy. Mol Neurobiol. 2020;57:1115–30.

    Article  CAS  PubMed  Google Scholar 

  68. Levine AJ, Soontornniyomkij V, Achim CL, Masliah E, Gelman BB, Sinsheimer JS, Singer EJ, Moore DJ. Multilevel analysis of neuropathogenesis of neurocognitive impairment in HIV. J Neurovirol. 2016;22:431–41.

    Article  CAS  PubMed  Google Scholar 

  69. Miller RF, Lucas SB, Hall-Craggs MA, Brink NS, Scaravilli F, Chinn RJ, Kendall BE, Williams IG, Harrison MJ. Comparison of magnetic resonance imaging with neuropathological findings in the diagnosis of HIV and CMV associated CNS disease in AIDS. J Neurol Neurosurg Psychiatry. 1997;62:346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Everall IP, Chong WK, Wilkinson ID, Paley MN, Chinn RJ, Hall-Craggs MA, Scaravilli F, Lantos PL, Luthert PJ, Harrison MJ. Correlation of MRI and neuropathology in AIDS. J Neurol Neurosurg Psychiatry. 1997;62:92–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Grafe MR, Press GA, Berthoty DP, Hesselink JR, Wiley CA. Abnormalities of the brain in AIDS patients: correlation of postmortem MR findings with neuropathology. AJNR Am J neuroradiol. 1990;11:905–11 (discussion 912-3).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. McGuire J, Brown R, Datta R, Fadda G, Tuite N, Harrison J, Douglas S, Banwell B. Impaired cognition and reduced brain volumes in youth with behaviorally acquired HIV. in: Conference on Retroviruses and Opportunistic Infections (CROI); presented 3/8/20; Boston MA.

  73. Douglas SD, Rudy B, Muenz L, Starr SE, Campbell DE, Wilson C, Holland C, Crowley-Nowick P, Vermund SH. T-lymphocyte subsets in HIV-infected and high-risk HIV-uninfected adolescents: retention of naive T lymphocytes in HIV-infected adolescents. The Adolescent Medicine HIV/AIDS Research Network. Arch Pediatr Adolesc Med. 2000;154:375–80. Core paper in discussing differing immunologic responses in adolescents with behaviorally acquired HIV compared to expected responses in adults.

    Article  CAS  PubMed  Google Scholar 

  74. National Center for Drug Abuse Statistics. Drug Abuse Statistics. 2022. https://drugabusestatistics.org. Accessed 20 Sep 2022.

  75. Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30:718–29.

    Article  PubMed  Google Scholar 

  76. Giedd JN, Blumenthal J, Jeffries NO, Castellanos FX, Liu H, Zijdenbos A, Paus T, Evans AC, Rapoport JL. Brain development during childhood and adolescence: a longitudinal MRI study. Nat Neurosci. 1999;2:861–3.

    Article  CAS  PubMed  Google Scholar 

  77. Berl MM, Vaidya CJ, Gaillard WD. Functional imaging of developmental and adaptive changes in neurocognition. Neuroimage. 2006;30:679–91.

    Article  PubMed  Google Scholar 

  78. Shaw P, Gogtay N, Rapoport J. Childhood psychiatric disorders as anomalies in neurodevelopmental trajectories. Hum Brain Mapp. 2010;31:917–25.

    Article  PubMed  PubMed Central  Google Scholar 

  79. McGuire JL, Gill AJ, Douglas SD, Kolson DL, CNS HIV Antiretroviral Therapy Effects Research (CHARTER) Group. The complement system, neuronal injury, and cognitive function in horizontally-acquired HIV-infected youth. Journal of Neurovirology. 2016;22:823–30. ()

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jensen BK, Monnerie H, Mannell MV, et al. Altered oligodendrocyte maturation and myelin maintenance: the role of antiretrovirals in HIV-associated neurocognitive disorders. J Neuropathol Exp Neurol. 2015;74:1093–118.

    Article  CAS  PubMed  Google Scholar 

  81. Jensen BK, Roth LM, Grinspan JB, Jordan-Sciutto KL. White matter loss and oligodendrocyte dysfunction in HIV: a consequence of the infection, the antiretroviral therapy or both? Brain Res. 2019;1724: 146397. Review of evidence of myelin pathology from human HIV studies and review of studies on oligodendrocyte development and maintenance in vitro and in animal models in the presence of viral proteins or antiretroviral drugs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Douglas SD, Durako SJ, Tustin NB, Houser J, Muenz L, Starr SE, Wilson C, Network AMHAR. Natural killer cell enumeration and function in HIV-infected and high-risk uninfected adolescents. AIDS Res Hum Retroviruses. 2001;17:543–52.

    Article  CAS  PubMed  Google Scholar 

  83. Norris GT, Smirnov I, Filiano AJ, Shadowen HM, Cody KR, Thompson JA, Harris TH, Gaultier A, Overall CC, Kipnis J. Neuronal integrity and complement control synaptic material clearance by microglia after CNS injury. J Exp Med. 2018;215:1789–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stevens B, Allen NJ, Vazquez LE, et al. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131:1164–78. Seminal work on the role of the complement cascade in microglial mediated pruning.

    Article  CAS  PubMed  Google Scholar 

  85. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89.

    Article  CAS  PubMed  Google Scholar 

  86. Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ. The complement cascade: Yin-Yang in neuroinflammation–neuro-protection and -degeneration. J Neurochem. 2008;107:1169–87. [abstract]

  87. Everall I, Heaton R, Marcotte T, Ellis R, McCutchan J, Atkinson J, Grant I, Mallory M, Masliah E, Group H. Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. Brain Pathol. 1999;9:209–17.

    Article  CAS  PubMed  Google Scholar 

  88. Ryan SK, Gonzalez MV, Garifallou JP, et al. Neuroinflammation and EIF2 signaling persist despite antiretroviral treatment in an hiPSC tri-culture model of HIV infection. Stem Cell Rep. 2020;14:703–16.

    Article  CAS  Google Scholar 

  89. Mazzolini J, Herit F, Bouchet J, Benmerah A, Benichou S, Niedergang F. Inhibition of phagocytosis in HIV-1-infected macrophages relies on Nef-dependent alteration of focal delivery of recycling compartments. Blood. 2010;115:4226–36.

    Article  CAS  PubMed  Google Scholar 

  90. Debaisieux S, Lachambre S, Gross A, Mettling C, Besteiro S, Yezid H, Henaff D, Chopard C, Mesnard J-M, Beaumelle B. HIV-1 Tat inhibits phagocytosis by preventing the recruitment of Cdc42 to the phagocytic cup. Nat Commun. 2015;6:6211.

    Article  PubMed  Google Scholar 

  91. Chari DM, Blakemore WF. Efficient recolonisation of progenitor-depleted areas of the CNS by adult oligodendrocyte progenitor cells. Glia. 2002;37:307–13.

    Article  PubMed  Google Scholar 

  92. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. New Engl J Medicine. 2002;346:165–73.

    Article  Google Scholar 

  93. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci. 2018;21:696–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bechler ME, Swire M, ffrench-Constant C. Intrinsic and adaptive myelination—a sequential mechanism for smart wiring in the brain. Dev Neurobiol. 2018;78:68–79.

    Article  PubMed  Google Scholar 

  95. Borjabad A, Morgello S, Chao W, Kim S-Y, Brooks AI, Murray J, Potash MJ, Volsky DJ. Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders. Plos Pathog. 2011;7:e1002213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gannon PJ, Akay-Espinoza C, Yee AC, et al. HIV protease inhibitors alter amyloid precursor protein processing via β-site amyloid precursor protein cleaving enzyme-1 translational up-regulation. Am J Pathology. 2017;187:91–109.

    Article  CAS  Google Scholar 

  97. Stern AL, Lee RN, Panvelker N, Li J, Harowitz J, Jordan-Sciutto KL, Akay-Espinoza C. Differential effects of antiretroviral drugs on neurons in vitro: roles for oxidative stress and integrated stress response. J Neuroimmune Pharm. 2018;13:64–76.

    Article  Google Scholar 

  98. French HM, Reid M, Mamontov P, Simmons RA, Grinspan JB. Oxidative stress disrupts oligodendrocyte maturation. J Neurosci Res. 2009;87:3076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lin W, Popko B. Endoplasmic reticulum stress in disorders of myelinating cells. Nat Neurosci. 2009;12:379–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Monnerie H, Romer M, Jensen BK, Millar JS, Jordan-Sciutto KL, Kim SF, Grinspan JB. Reduced sterol regulatory element-binding protein (SREBP) processing through site-1 protease (S1P) inhibition alters oligodendrocyte differentiation in vitro. J Neurochem. 2017;140:53–67.

    Article  CAS  PubMed  Google Scholar 

  101. Kavanaugh B, Beesley J, Itoh T, Itoh A, Grinspan J, Pleasure D. Neurotrophin-3 (NT-3) diminishes susceptibility of the oligodendroglial lineage to AMPA glutamate receptor-mediated excitotoxicity. J Neurosci Res. 2000;60:725–32.

    Article  CAS  PubMed  Google Scholar 

  102. Akay C, Cooper M, Odeleye A, et al. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol. 2014;20:39–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Akay C, Lindl KA, Shyam N, Nabet B, Goenaga-Vazquez Y, Ruzbarsky J, Wang Y, Kolson DL, Jordan-Sciutto KL. Activation status of integrated stress response pathways in neurones and astrocytes of HIV-associated neurocognitive disorders (HAND) cortex: activation of integrated stress response in HAND. Neuropath Appl Neuro. 2012;38:175–200.

    Article  CAS  Google Scholar 

  104. Lindl KA, Akay C, Wang Y, White MG, Jordan-Sciutto KL. Expression of the endoplasmic reticulum stress response marker, BiP, in the central nervous system of HIV-positive individuals. Neuropath Appl Neuro. 2007;33:658–69.

    Article  CAS  Google Scholar 

  105. Festa L, Roth LM, Jensen BK, Geiger JD, Jordan-Sciutto KL, Grinspan JB. Protease inhibitors, saquinavir and darunavir, inhibit oligodendrocyte maturation: implications for lysosomal stress. J Neuroimmune Pharm. 2021;16:169–80. Oligodendrocyte development is inhibited in vitro by two frontline protease inhibitors. Lysosomal deacidification is implicated and differentiation can be rescued by lysosomal reacidification.

    Article  Google Scholar 

  106. Roth LM, Zidane B, Festa L, Putatunda R, Romer M, Monnerie H, Jordan-Sciutto KL, Grinspan JB. Differential effects of integrase strand transfer inhibitors, elvitegravir and raltegravir, on oligodendrocyte maturation: a role for the integrated stress response. Glia. 2021;69:362–76. The integrase strand transfer inhibitor, elvitegravir, inhibits oligodendrocyte maturation in vitro via the integrated stress response, whereas another INSTI, raltegravir, has no effect on maturation. Elivategravir also inhibits demyelination in vivo in an animal model of demyelination.

    Article  CAS  PubMed  Google Scholar 

  107. Gelman B, Morgello S. National NeuroAIDS Tissue Bank, personal communication. 2015.

  108. Mallard J, Williams KC. Animal models of HIV-associated disease of the central nervous system. Handb Clin Neurology. 2018;152:41–53.

    Article  Google Scholar 

  109. Joseph J. Optimizing animal models for HIV-associated CNS dysfunction and CNS reservoir research. J Neurovirol. 2018;24:137–40. Comprehensive summary of existing animal models used to study HIV-associated CNS dysfunction.

    Article  CAS  PubMed  Google Scholar 

  110. Zehr JL, van Meter PE, Wallen K. Factors regulating the timing of puberty onset in female rhesus monkeys (Macaca mulatta): role of prenatal androgens, social rank, and adolescent body weight. Biol Reprod. 2005;72:1087–94.

    Article  CAS  PubMed  Google Scholar 

  111. Reid W, Sadowska M, Denaro F, et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc National Acad Sci. 2001;98:9271–6.

    Article  CAS  Google Scholar 

  112. Repunte-Canonigo V, Lefebvre C, George O, Kawamura T, Morales M, Koob GF, Califano A, Masliah E, Sanna PP. Gene expression changes consistent with neuroAIDS and impaired working memory in HIV-1 transgenic rats. Mol Neurodegener. 2014;9:26–26.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lentz MR, Peterson KL, Ibrahim WG, Lee DE, Sarlls J, Lizak MJ, Maric D, Reid WC, Hammoud DA. Diffusion tensor and volumetric magnetic resonance measures as biomarkers of brain damage in a small animal model of HIV. PLoS ONE. 2014;9:e105752.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mayer KH, Molina J-M, Thompson MA, et al. Emtricitabine and tenofovir alafenamide vs emtricitabine and tenofovir disoproxil fumarate for HIV pre-exposure prophylaxis (DISCOVER): primary results from a randomised, double-blind, multicentre, active-controlled, phase 3, non-inferiority trial. Lancet. 2020;396:239–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li MD, Cao J, Wang S, Wang J, Sarkar S, Vigorito M, Ma JZ, Chang SL. Transcriptome sequencing of gene expression in the brain of the HIV-1 transgenic rat. PLoS ONE. 2013;8:e59582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received funding from the National Institutes of Health K23 NS094069 (McGuire), R01 MH126773 (Grinspan, Jordan-Sciutto, McGuire), and R01 MH098742 (Grinspan, Jordan-Sciutto).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. McGuire.

Ethics declarations

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McGuire, J.L., Grinspan, J.B. & Jordan-Sciutto, K.L. Update on Central Nervous System Effects of HIV in Adolescents and Young Adults. Curr HIV/AIDS Rep 20, 19–28 (2023). https://doi.org/10.1007/s11904-023-00651-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-023-00651-3

Keywords

Navigation