Skip to main content
Log in

A review of recent trend in motion planning of industrial robots

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Motion planning is an integral part of each robotic system. It is critical to develop an effective motion in order to achieve a successful performance. The ability to generate a smooth, optimal, and precise trajectory is crucial for a robotic arm to accomplish a complex task. Classical approaches such as artificial potential fields, sampling-based, and bio-inspired heuristic methods, have been widely used to solve the motion planning problem. However, most of these methods are ineffective in highly dynamic and high-dimensional configuration space due to the high computations and low convergence rates impeding real-time implementations. Recently, learning-based methods have gained considerable attention in tackling the motion planning problem due to their generalization and high ability to deal with complex issues. This research presents a detailed overview of the most recent developments in solving the motion planning problem for manipulator robotics systems. Specifically, it focuses on how learning-based methods are developed to address the drawbacks of classical approaches. We examined current works on manipulator motion planning and outlined the gaps, limitations, and prospects for further research and analysis. Subsequently, this study investigates three main learning-based motion planning methods: deep learning-based motion planners, reinforcement learning, and learning by demonstration. This paper can help experts to benefit from concise version of advantages and disadvantages of different motion planning techniques to use them in their research. We anticipate that learning-based path planning methods will remain the subject of research in the foreseeable future because these solutions are typically dependent on problem-specific knowledge and datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Code or data availability

The authors declare that data supporting the findings of this study are available within the article.

References

  • Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies. Springer, pp. 187–210 (2005)

  • Abdor-Sierra, J.A., Merchán-Cruz, E.A., Sánchez-Garfias, F.A., Rodríguez-Cañizo, R.G., Portilla-Flores, E.A., Vázquez-Castillo, V.: Particle swarm optimization for inverse kinematics solution and trajectory planning of 7-dof and 8-dof robot manipulators based on unit quaternion representation. J. Appl. Eng. Sci. 19(3), 592–599 (2021)

    Article  Google Scholar 

  • Aleo, I., Arena, P., Patané, L.: Sarsa-based reinforcement learning for motion planning in serial manipulators. In: The 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, pp. 1–6 (2010)

  • Almasri, E., Uyguroğlu, M.K.: Trajectory optimization in robotic applications, survey of recent developments (2021)

  • Argall, B.D., Chernova, S., Veloso, M., Browning, B.: A survey of robot learning from demonstration. Robot. Auton. Syst. 57(5), 469–483 (2009)

    Article  Google Scholar 

  • Badawy, A.: Dual-well potential field function for articulated manipulator trajectory planning. Alex. Eng. J. 55(2), 1235–1241 (2016)

    Article  MathSciNet  Google Scholar 

  • Baghli, F.Z., bakkali, L.E., Lakhal, Y.: Optimization of arm manipulator trajectory planning in the presence of obstacles by ant colony algorithm. Procedia Eng. 181, 560–567 (2017). 10th International Conference Interdisciplinarity in Engineering, INTER-ENG 2016, 6–7 October 2016, Tirgu Mures, Romania

  • Bency, M.J., Qureshi, A.H., Yip, M.C.: Neural path planning: Fixed time, near-optimal path generation via oracle imitation. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 3965–3972 (2019)

  • Berenson, D., Abbeel, P., Goldberg, K.: A robot path planning framework that learns from experience. In: 2012 IEEE International Conference on Robotics and Automation. IEEE, pp. 3671–3678 (2012)

  • Boggs, P.T., Tolle, J.W.: Sequential quadratic programming. Acta Numer 4, 1–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  • Bohlin, R., Kavraki, L.E.: Path planning using lazy prm. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 1. IEEE, pp. 521–528 (2000)

  • Calinon, S.: A tutorial on task-parameterized movement learning and retrieval. Intel. Serv. Robot. 9(1), 1–29 (2016)

    Article  Google Scholar 

  • Calinon, S.: Robot learning with task-parameterized generative models. In: Robotics Research. Springer, pp. 111–126 (2018)

  • Calinon, S., Billard, A.: Active teaching in robot programming by demonstration. In: RO-MAN 2007—The 16th IEEE International Symposium on Robot and Human Interactive Communication. IEEE, pp. 702–707 (2007)

  • Cao, H., Sun, S., Zhang, K., Tang, Z.: Visualized trajectory planning of flexible redundant robotic arm using a novel hybrid algorithm. Optik 127(20), 9974–9983 (2016)

    Article  Google Scholar 

  • Cao, X., Yan, H., Huang, Z., Ai, S., Xu, Y., Fu, R., Zou, X.: A multi-objective particle swarm optimization for trajectory planning of fruit picking manipulator. Agronomy 11(11), 2286 (2021)

    Article  Google Scholar 

  • Carabin, G., Scalera, L.: On the trajectory planning for energy efficiency in industrial robotic systems. Robotics 9(4), 89 (2020)

    Article  Google Scholar 

  • Chehelgami, S., Ashtari, E., Basiri, M.A., Tale Masouleh, M., Kalhor, A.: Safe deep learning-based global path planning using a fast collision-free path generator (2022). https://ssrn.com/abstract=4170011r

  • Chen, X., Ghadirzadeh, A., Folkesson, J., Björkman, M., Jensfelt, P.: Deep reinforcement learning to acquire navigation skills for wheel-legged robots in complex environments. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 3110–3116 (2018)

  • Chen, P., Pei, J., Lu, W., Li, M.: A deep reinforcement learning based method for real-time path planning and dynamic obstacle avoidance. Neurocomputing 497, 64–75 (2022)

    Article  Google Scholar 

  • Cheng, R., Shankar, K., Burdick, J.W.: Learning an optimal sampling distribution for efficient motion planning. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 7485–7492 (2020)

  • Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press (2005)

  • Chumkamon, S., Yokkampon, U., Hayashi, E., Fujisawa, R.: Robot motion generation by hand demonstration. In: Proceedings of International Conference on Artificial Life & Robotics (ICAROB2021), pp. 768–771 (2021)

  • Coleman, D., Şucan, I.A., Moll, M., Okada, K., Correll, N.: Experience-based planning with sparse roadmap spanners. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 900–905 (2015)

  • Cong, M., Dong, H., Liu, D.: Reinforcement learning and ega-based trajectory planning for dual robots yi liu. Int. J. Robot. Automat. 33(4) (2018)

  • da Graça Marcos, M., Machado, J.T., Azevedo-Perdicoúlis, T.-P.: Trajectory planning of redundant manipulators using genetic algorithms. Commun. Nonlinear Sci. Numer. Simul. 14(7), 2858–2869 (2009)

    Article  Google Scholar 

  • da Graça Marcos, M., Machado, J.T., Azevedo-Perdicoúlis, T.-P.: A multi-objective approach for the motion planning of redundant manipulators. Appl. Soft Comput. 12(2), 589–599 (2012)

    Article  Google Scholar 

  • Das, N., Yip, M.: Learning-based proxy collision detection for robot motion planning applications. IEEE Trans. Rob. 36(4), 1096–1114 (2020)

    Article  Google Scholar 

  • Devi, M.A., Jadhav, P.D., Adhikary, N., Hebbar, P.S., Mohsin, M., Shashank, S.K.: Trajectory planning & computation of inverse kinematics of scara using machine learning. In: 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). IEEE, pp. 170–176 (2021)

  • Diankov, R., Kuffner, J.: Randomized statistical path planning. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 1–6 (2007)

  • Ding, W., Liu, Y., Zhang, H., Shah, M.A., Ikbal, M.A.: Research on manipulator motion planning for complex systems based on deep learning. Int. J. Syst. Assur. Eng. Manag., 1–10 (2021)

  • Duguleana, M., Barbuceanu, F.G., Teirelbar, A., Mogan, G.: Obstacle avoidance of redundant manipulators using neural networks based reinforcement learning. Robot. Comput. Integr. Manuf. 28(2), 132–146 (2012)

    Google Scholar 

  • Duque, D.A., Prieto, F.A., Hoyos, J.G.: Trajectory generation for robotic assembly operations using learning by demonstration. Robot. Comput. Integr. Manuf. 57, 292–302 (2019)

    Article  Google Scholar 

  • Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Ieee, pp. 39–43 (1995)

  • Elbanhawi, M., Simic, M.: Sampling-based robot motion planning: a review. Ieee access 2, 56–77 (2014)

    Article  Google Scholar 

  • Ellekilde, L.-P., Petersen, H.G.: Motion planning efficient trajectories for industrial bin-picking. Int. J. Robot. Res. 32(9–10), 991–1004 (2013)

    Article  Google Scholar 

  • Everett, M., Chen, Y.F., How, J.P.: Motion planning among dynamic, decision-making agents with deep reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 3052–3059 (2018)

  • Fadzli, S.A., Abdulkadir, S.I., Makhtar, M., Jamal, A.A.: Robotic indoor path planning using dijkstra’s algorithm with multi-layer dictionaries. In: 2015 2nd International Conference on Information Science and Security (ICISS). IEEE, pp. 1–4 (2015)

  • Ferguson, D., Stentz, A.: Anytime rrts. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 5369–5375 (2006)

  • Field, G., Stepanenko, Y.: Iterative dynamic programming: an approach to minimum energy trajectory planning for robotic manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, vol. 3. IEEE, pp. 2755–2760 (1996)

  • Fontanals, J., Dang-Vu, B.-A., Porges, O., Rosell, J., Roa, M.A.: Integrated grasp and motion planning using independent contact regions. In: 2014 IEEE-RAS International Conference on Humanoid Robots. IEEE, pp. 887–893 (2014)

  • Gai, S.N., Sun, R., Chen, S.J., Ji, S.: 6-dof robotic obstacle avoidance path planning based on artificial potential field method. In: 2019 16th International Conference on Ubiquitous Robots (UR). IEEE, pp. 165–168 (2019)

  • Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Informed rrt*: optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, pp. 2997–3004 (2014)

  • Gammell, J.D., Srinivasa, S.S., Barfoot, T.D.: Batch informed trees (bit*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3067–3074 (2015)

  • Gao, X., Wu, H., Zhai, L., Sun, H., Jia, Q., Wang, Y., Wu, L.: A rapidly exploring random tree optimization algorithm for space robotic manipulators guided by obstacle avoidance independent potential field. Int. J. Adv. Rob. Syst. 15(3), 1729881418782240 (2018)

    Google Scholar 

  • Garg, D.P., Kumar, M.: Optimization techniques applied to multiple manipulators for path planning and torque minimization. Eng. Appl. Artif. Intell. 15(3–4), 241–252 (2002)

    Article  Google Scholar 

  • Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R.: Path planning and trajectory planning algorithms: a general overview. Motion Oper. Plan. Robot. Syst., 3–27 (2015)

  • Geraerts, R., Overmars, M.H.: Creating high-quality paths for motion planning. Int. J. Robot. Res. 26(8), 845–863 (2007)

    Article  Google Scholar 

  • Ghahramani, Z.: Probabilistic machine learning and artificial intelligence. Nature 521(7553), 452–459 (2015)

    Article  Google Scholar 

  • Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J Robot Automat 4(2), 193–203 (1988)

    Article  Google Scholar 

  • Guo, M., Wang, Y., Liang, B., Chen, Z., Lin, J., Huang, K.: Robot path planning via deep reinforcement learning with improved reward function. In: Proceedings of 2021 Chinese Intelligent Systems Conference. Springer, pp. 672–680 (2022)

  • Gupta, K., Najjaran, H.: Exploiting abstract symmetries in reinforcement learning for complex environments. In: 2022 International Conference on Robotics and Automation (ICRA). IEEE, pp. 3631–3637 (2022)

  • Guruji, A.K., Agarwal, H., Parsediya, D.: Time-efficient a* algorithm for robot path planning. Procedia Technol. 23, 144–149 (2016)

    Article  Google Scholar 

  • Hamdoun, O., El Bakkali, L., Baghli, F.Z.: Optimal trajectory planning of 3rrr parallel robot using ant colony algorithm. In: Zeghloul, S., Laribi, M.A., Gazeau, J.-P. (eds.) Robotics and Mechatronics, pp. 131–139. Springer, Cham (2016)

    Chapter  Google Scholar 

  • Hauser, K.: Lazy collision checking in asymptotically-optimal motion planning. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2951–2957 (2015)

  • Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection. ACM Trans Gr (TOG) 15(3), 179–210 (1996)

    Article  Google Scholar 

  • Huh, J., Lee, D.D.: Learning high-dimensional mixture models for fast collision detection in rapidly-exploring random trees. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 63–69 (2016)

  • Ichter, B., Harrison, J., Pavone, M.: Learning sampling distributions for robot motion planning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 7087–7094 (2018)

  • Ichter, B., Pavone, M.: Robot motion planning in learned latent spaces. IEEE Robot Automat Lett 4(3), 2407–2414 (2019)

    Article  Google Scholar 

  • Ijspeert, A.J., Nakanishi, J., Schaal, S.: Movement imitation with nonlinear dynamical systems in humanoid robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), vol. 2. IEEE, pp. 1398–1403 (2002)

  • Incremona, G.P., Sacchi, N., Sangiovanni, B., Ferrara, A.: Experimental assessment of deep reinforcement learning for robot obstacle avoidance: a lpv control perspective. IFAC-PapersOnLine 54(8), 89–94 (2021)

    Article  Google Scholar 

  • Jaryani, M.H.: An effective manipulator trajectory planning with obstacles using virtual potential field method. In: 2007 IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp. 1573–1578 (2007)

  • Jeevamalar, J., Ramabalan, S.: Optimal trajectory planning for autonomous robots-a review. In: IEEE-International Conference on Advances in Engineering, Science and Management (ICAESM-2012) IEEE, pp. 269–275 (2012)

  • Jin, W., Murphey, T.D., Kulić, D., Ezer, N., Mou, S.: Learning from sparse demonstrations. IEEE Trans. Robot. (2022)

  • Jurgenson, T., Tamar, A.: Harnessing reinforcement learning for neural motion planning (2019). arXiv preprint arXiv:1906.00214

  • Kahn, G., Sujan, P., Patil, S., Bopardikar, S., Ryde, J., Goldberg, K., Abbeel, P.: Active exploration using trajectory optimization for robotic grasping in the presence of occlusions. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 4783–4790 (2015)

  • Kamali, K., Bonev, I.A., Desrosiers, C.: Real-time motion planning for robotic teleoperation using dynamic-goal deep reinforcement learning. In: 2020 17th Conference on Computer and Robot Vision (CRV). IEEE, pp. 182–189 (2020)

  • Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  MATH  Google Scholar 

  • Katyal, K., Wang, I., Burlina, P., et al.: Leveraging deep reinforcement learning for reaching robotic tasks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 18–19 (2017)

  • Kavraki, L.E., Svestka, P., Latombe, J.-C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  • Kavraki, L.E., Kolountzakis, M.N., Latombe, J.-C.: Analysis of probabilistic roadmaps for path planning. IEEE Trans. Robot. Autom. 14(1), 166–171 (1998)

    Article  Google Scholar 

  • Khan, A.T., Li, S., Kadry, S., Nam, Y.: Control framework for trajectory planning of soft manipulator using optimized rrt algorithm. IEEE Access 8, 171730–171743 (2020)

    Article  Google Scholar 

  • Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles. Springer, pp. 396–404 (1986)

  • Kim, D.-H., Lim, S.-J., Lee, D.-H., Lee, J.Y., Han, C.-S.: A rrt-based motion planning of dual-arm robot for (dis) assembly tasks. In: IEEE ISR 2013. IEEE, pp. 1–6 (2013)

  • Kim, J.-J., Park, S.-Y., Lee, J.-J.: Adaptability improvement of learning from demonstration with sequential quadratic programming for motion planning. In: 2015 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE, pp. 1032–1037 (2015)

  • Kingston, Z., Moll, M., Kavraki, L.E.: Sampling-based methods for motion planning with constraints. Annu. Rev. Control Robot. Auton. Syst. 1, 159–185 (2018)

    Article  Google Scholar 

  • Kleinbort, M., Salzman, O., Halperin, D.: Collision detection or nearest-neighbor search? on the computational bottleneck in sampling-based motion planning (2016). arXiv preprint arXiv:1607.04800

  • Kucuk, S.: Optimal trajectory generation algorithm for serial and parallel manipulators. Robot. Comput. Integr. Manuf. 48, 219–232 (2017)

    Article  Google Scholar 

  • Kuffner, J.J., LaValle, S.M.: Rrt-connect: An efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, pp. 995–1001 (2000)

  • LaValle, S.M., et al.: Rapidly-exploring random trees: a new tool for path planning (1998)

  • LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  • Lehner, P., Albu-Schäffer, A.: Repetition sampling for efficiently planning similar constrained manipulation tasks. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 2851–2856 (2017)

  • Lehner, P., Albu-Schäffer, A.: The repetition roadmap for repetitive constrained motion planning. IEEE Robot. Automat. Lett. 3(4), 3884–3891 (2018)

    Article  Google Scholar 

  • Lembono, T.S., Pignat, E., Jankowski, J., Calinon, S.: Learning constrained distributions of robot configurations with generative adversarial network. IEEE Robot. Automat. Lett. 6(2), 4233–4240 (2021)

    Article  Google Scholar 

  • Li, Y., Cui, R., Li, Z., Xu, D.: Neural network approximation based near-optimal motion planning with kinodynamic constraints using rrt. IEEE Trans. Ind. Electron. 65(11), 8718–8729 (2018)

    Article  Google Scholar 

  • Li, H., Wang, Z., Ou, Y.: Obstacle avoidance of manipulators based on improved artificial potential field method. In: 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 564–569 (2019)

  • Li, Z., Ma, H., Ding, Y., Wang, C., Jin, Y.: Motion planning of six-dof arm robot based on improved DDPG algorithm. In: 2020 39th Chinese Control Conference (CCC). IEEE, pp. 3954–3959 (2020)

  • Li, Y., Hao, X., She, Y., Li, S., Yu, M.: Constrained motion planning of free-float dual-arm space manipulator via deep reinforcement learning. Aerosp. Sci. Technol. 109, 106446 (2021)

    Article  Google Scholar 

  • Li, L., Miao, Y., Qureshi, A.H., Yip, M.C.: Mpc-mpnet: model-predictive motion planning networks for fast, near-optimal planning under kinodynamic constraints. IEEE Robot. Automat. Lett. 6(3), 4496–4503 (2021)

    Article  Google Scholar 

  • Lin, H.-I., Hsieh, M.-F.: Robotic arm path planning based on three-dimensional artificial potential field. In: 2018 18th International Conference on Control, Automation and Systems (ICCAS). IEEE, pp. 740–745 (2018)

  • Liu, S., Liu, P.: A review of motion planning algorithms for robotic arm systems. RiTA 2020, 56–66 (2021)

    Google Scholar 

  • Liu, S., Zhang, Q., Zhou, D.: Obstacle avoidance path planning of space manipulator based on improved artificial potential field method. J. Inst. Eng. (India) Ser. C 95(1), 31–39 (2014)

  • Liu, Y., Guo, C., Weng, Y.: Online time-optimal trajectory planning for robotic manipulators using adaptive elite genetic algorithm with singularity avoidance. IEEE Access 7, 146301–146308 (2019)

    Article  Google Scholar 

  • Liu, L.-s., Lin, J.-f., Yao, J.-x., He, D.-w., Zheng, J.-s., Huang, J., Shi, P.: Path planning for smart car based on dijkstra algorithm and dynamic window approach. Wirel. Commun. Mob. Comput. 2021 (2021)

  • Lo Bianco, C.G., Piazzi, A.: Minimum-time trajectory planning of mechanical manipulators under dynamic constraints. Int. J. Control 75(13), 967–980 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Long, Z.: Virtual target point-based obstacle-avoidance method for manipulator systems in a cluttered environment. Eng. Optim. 52(11), 1957–1973 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Lu, S., Ding, B., Li, Y.: Minimum-jerk trajectory planning pertaining to a translational 3-degree-of-freedom parallel manipulator through piecewise quintic polynomials interpolation. Adv. Mech. Eng. 12(3), 1687814020913667 (2020)

    Article  Google Scholar 

  • Lynch, K.M., Park, F.C.: Modern Robotics. Cambridge University Press, Cambridge (2017)

    Google Scholar 

  • Mac, T.T., Copot, C., Tran, D.T., De Keyser, R.: Heuristic approaches in robot path planning: a survey. Robot Autonom Syst 86, 13–28 (2016)

    Article  Google Scholar 

  • Marturi, N., Kopicki, M., Rastegarpanah, A., Rajasekaran, V., Adjigble, M., Stolkin, R., Leonardis, A., Bekiroglu, Y.: Dynamic grasp and trajectory planning for moving objects. Auton. Robot. 43(5), 1241–1256 (2019)

    Article  Google Scholar 

  • Mbede, J.B., Huang, X., Wang, M.: Fuzzy motion planning among dynamic obstacles using artificial potential fields for robot manipulators. Robot. Auton. Syst. 32(1), 61–72 (2000)

    Article  Google Scholar 

  • McGuire, K.N., de Croon, G.C., Tuyls, K.: A comparative study of bug algorithms for robot navigation. Robot. Auton. Syst. 121, 103261 (2019)

    Article  Google Scholar 

  • Menasri, R., Nakib, A., Daachi, B., Oulhadj, H., Siarry, P.: A trajectory planning of redundant manipulators based on bilevel optimization. Appl. Math. Comput. 250, 934–947 (2015)

    MathSciNet  MATH  Google Scholar 

  • Mukherjee, D., Gupta, K., Chang, L.H., Najjaran, H.: A survey of robot learning strategies for human-robot collaboration in industrial settings. Robot. Comput. Integr. Manuf. 73, 102231 (2022)

    Article  Google Scholar 

  • Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W., Abbeel, P.: Overcoming exploration in reinforcement learning with demonstrations. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 6292–6299 (2018)

  • Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta \(\hat{}\) *: Any-angle path planning on grids. In: AAAI, vol. 7, pp. 1177–1183 (2007)

  • Palmieri, G., Scoccia, C.: Motion planning and control of redundant manipulators for dynamical obstacle avoidance. Machines 9(6), 121 (2021)

    Article  Google Scholar 

  • Pan, J., Manocha, D.: Efficient configuration space construction and optimization for motion planning. Engineering 1(1), 046–057 (2015)

    Article  Google Scholar 

  • Pan, J., Manocha, D.: Fast probabilistic collision checking for sampling-based motion planning using locality-sensitive hashing. Int. J. Robot. Res. 35(12), 1477–1496 (2016)

    Article  Google Scholar 

  • Parque, V.: Learning motion planning functions using a linear transition in the c-space: Networks and kernels. In: 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE, pp. 1538–1543 (2021)

  • Peng, G., Yang, J., Lia, X., Khyam, M.O.: Deep reinforcement learning with a stage incentive mechanism of dense reward for robotic trajectory planning (2020). arXiv preprint arXiv:2009.12068

  • Pérez-D’Arpino, C., Shah, J.A.: C-learn: Learning geometric constraints from demonstrations for multi-step manipulation in shared autonomy. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 4058–4065 (2017)

  • Pham, Q.-C.: Trajectory planning. In: Handbook of Manufacturing Engineering and Technology, pp. 1873–1887 (2015)

  • Piazzi, A., Visioli, A.: Global minimum-time trajectory planning of mechanical manipulators using interval analysis. Int. J. Control 71(4), 631–652 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Piazzi, A., Visioli, A.: Global minimum-jerk trajectory planning of robot manipulators. IEEE Trans. Industr. Electron. 47(1), 140–149 (2000)

    Article  Google Scholar 

  • Pires, E., Tenreiro Machado, J.: Trajectory optimization for redundant robots using genetic algorithms with heuristic operators. In: Genetic and Evolutionary Computation Conference, pp. 1–9 (2000)

  • Prianto, E., Kim, M., Park, J.-H., Bae, J.-H., Kim, J.-S.: Path planning for multi-arm manipulators using deep reinforcement learning: soft actor-critic with hindsight experience replay. Sensors 20(20), 5911 (2020)

    Article  Google Scholar 

  • Prianto, E., Park, J.-H., Bae, J.-H., Kim, J.-S.: Deep reinforcement learning-based path planning for multi-arm manipulators with periodically moving obstacles. Appl. Sci. 11(6), 2587 (2021)

    Article  Google Scholar 

  • Qiao, T., Yang, D., Hao, W., Yan, J., Wang, R.: Trajectory planning of manipulator based on improved genetic algorithm. In: Journal of Physics: Conference Series, vol. 1576. IOP Publishing, p. 012035 (2020)

  • Qureshi, A.H., Ayaz, Y.: Potential functions based sampling heuristic for optimal path planning. Auton. Robot. 40(6), 1079–1093 (2016)

    Article  Google Scholar 

  • Qureshi, A.H., Yip, M.C.: Deeply informed neural sampling for robot motion planning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 6582–6588 (2018)

  • Qureshi, A.H., Mumtaz, S., Iqbal, K.F., Ali, B., Ayaz, Y., Ahmed, F., Muhammad, M.S., Hasan, O., Kim, W.Y., Ra, M.: Adaptive potential guided directional-rrt. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 1887–1892 (2013)

  • Qureshi, A.H., Simeonov, A., Bency, M.J., Yip, M.C.: Motion planning networks. In: 2019 International Conference on Robotics and Automation (ICRA). IEEE, pp. 2118–2124 (2019)

  • Qureshi, A.H., Dong, J., Baig, A., Yip, M.C.: Constrained motion planning networks x. IEEE Trans. Robot. (2021)

  • Qureshi, A.H., Miao, Y., Simeonov, A., Yip, M.C.: Motion planning networks: bridging the gap between learning-based and classical motion planners. IEEE Trans. Rob. 37(1), 48–66 (2020)

    Article  Google Scholar 

  • Qureshi, A.H., Dong, J., Choe, A., Yip, M.C.: Neural manipulation planning on constraint manifolds. IEEE Robot. Automat. Lett. 5(4), 6089–6096 (2020)

    Article  Google Scholar 

  • Rodríguez, C., Montaño, A., Suárez, R.: Planning manipulation movements of a dual-arm system considering obstacle removing. Robot. Auton. Syst. 62(12), 1816–1826 (2014)

    Article  Google Scholar 

  • Rosell, J., Iniguez, P.: Path planning using harmonic functions and probabilistic cell decomposition. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, pp. 1803–1808 (2005)

  • Roy, R., Mahadevappa, M., Kumar, C.: Trajectory path planning of eeg controlled robotic arm using ga. Procedia Comput. Sci. 84, 147–151 (2016)

    Article  Google Scholar 

  • Rybus, T., Seweryn, K.: Application of rapidly-exploring random trees (rrt) algorithm for trajectory planning of free-floating space manipulator. In: 2015 10th International Workshop on Robot Motion and Control (RoMoCo). IEEE, pp. 91–96 (2015)

  • Rybus, T.: Point-to-point motion planning of a free-floating space manipulator using the rapidly-exploring random trees (rrt) method. Robotica 38(6), 957–982 (2020)

    Article  Google Scholar 

  • Sadiq, A.T., Raheem, F.A., Abbas, N.A.F.: Ant colony algorithm improvement for robot arm path planning optimization based on d* strategy. Int. J. Mech. Mechatron. Eng. (2021)

  • Sangiovanni, B., Incremona, G.P., Piastra, M., Ferrara, A.: Self-configuring robot path planning with obstacle avoidance via deep reinforcement learning. IEEE Control Syst. Lett. 5(2), 397–402 (2020)

    Article  Google Scholar 

  • Santos, R.R., Rade, D.A., da Fonseca, I.M.: A machine learning strategy for optimal path planning of space robotic manipulator in on-orbit servicing. Acta Astronaut. 191, 41–54 (2022)

    Article  Google Scholar 

  • Semwal, V.B., Gupta, Y.: Performance analysis of data-driven techniques for solving inverse kinematics problems. In: Proceedings of SAI Intelligent Systems Conference. Springer, pp. 85–99 (2021)

  • Semwal, V.B., Reddy, M., Narad, A.: Comparative study of inverse kinematics using data driven and fabrik approach. In: Advances in Robotics-5th International Conference of The Robotics Society, pp. 1–6 (2021)

  • Shojaeinasab, A., Jalayer, M., Najjaran, H.: Insightigen: a versatile tool to generate insight for an academic systematic literature review (2022). arXiv preprint arXiv:2208.01752

  • Shojaeinasab, A., Charter, T., Jalayer, M., Khadivi, M., Ogunfowora, O., Raiyani, N., Yaghoubi, M., Najjaran, H.: Intelligent manufacturing execution systems: a systematic review. J. Manuf. Syst. 62, 503–522 (2022)

    Article  Google Scholar 

  • Shyam, R.A., Hao, Z., Montanaro, U., Dixit, S., Rathinam, A., Gao, Y., Neumann, G., Fallah, S.: Autonomous robots for space: Trajectory learning and adaptation using imitation. Front. Robot. AI 8 (2021)

  • Singer, S., Nelder, J.: Nelder-mead algorithm. Scholarpedia 4(7), 2928 (2009)

    Article  Google Scholar 

  • Song, Q., Li, S., Bai, Q., Yang, J., Zhang, A., Zhang, X., Zhe, L.: Trajectory planning of robot manipulator based on rbf neural network. Entropy 23(9), 1207 (2021)

    Article  MathSciNet  Google Scholar 

  • Stentz, A.: Optimal and efficient path planning for partially known environments. In: Intelligent Unmanned Ground Vehicles. Springer, pp. 203–220 (1997)

  • Števo, S., Sekaj, I., Dekan, M.: Optimization of robotic arm trajectory using genetic algorithm. IFAC Proc. Vol. 47(3), 1748–1753 (2014)

    Article  Google Scholar 

  • Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press (2018)

  • Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, pp. 31–36 (2017)

  • Tan, C.S., Mohd-Mokhtar, R., Arshad, M.R.: A comprehensive review of coverage path planning in robotics using classical and heuristic algorithms. IEEE Access (2021)

  • Tarokh, M., Zhang, X.: Real-time motion tracking of robot manipulators using adaptive genetic algorithms. J. Intell. Robot. Syst. 74(3), 697–708 (2014)

    Article  Google Scholar 

  • Tian, L., Collins, C.: An effective robot trajectory planning method using a genetic algorithm. Mechatronics 14(5), 455–470 (2004)

    Article  Google Scholar 

  • Volpe, R., Khosla, P.: Manipulator control with superquadric artificial potential functions: Theory and experiments. IEEE Trans. Syst. Man Cybern. 20(6), 1423–1436 (1990)

    Article  Google Scholar 

  • Wang, X., Luo, X., Han, B., Chen, Y., Liang, G., Zheng, K.: Collision-free path planning method for robots based on an improved rapidly-exploring random tree algorithm. Appl. Sci. 10(4), 1381 (2020)

    Article  Google Scholar 

  • Wang, S., Cao, Y., Zheng, X., Zhang, T.: An end-to-end trajectory planning strategy for free-floating space robots. In: 2021 40th Chinese Control Conference (CCC). IEEE, pp. 4236–4241 (2021)

  • Xie, J., Shao, Z., Li, Y., Guan, Y., Tan, J.: Deep reinforcement learning with optimized reward functions for robotic trajectory planning. IEEE Access 7, 105669–105679 (2019)

    Article  Google Scholar 

  • Xu, X., Hu, Y., Zhai, J., Li, L., Guo, P.: A novel non-collision trajectory planning algorithm based on velocity potential field for robotic manipulator. Int. J. Adv. Rob. Syst. 15(4), 1729881418787075 (2018)

    Google Scholar 

  • Xu, T., Zhou, H., Tan, S., Li, Z., Ju, X., Peng, Y.: Mechanical arm obstacle avoidance path planning based on improved artificial potential field method. Ind. Robot., 2021 (2021)

  • Yang, J., Peng, G.: Ddpg with meta-learning-based experience replay separation for robot trajectory planning. In: 2021 7th International Conference on Control, Automation and Robotics (ICCAR). IEEE, pp. 46–51 (2021)

  • Ying, K.-C., Pourhejazy, P., Cheng, C.-Y., Cai, Z.-Y.: Deep learning-based optimization for motion planning of dual-arm assembly robots. Comput. Industr. Eng. 160, 107603 (2021)

    Article  Google Scholar 

  • Yu, L., Wang, K., Zhang, Q., Zhang, J.: Trajectory planning of a redundant planar manipulator based on joint classification and particle swarm optimization algorithm. Multibody Sys. Dyn. 50(1), 25–43 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Yuan, C., Zhang, W., Liu, G., Pan, X., Liu, X.: A heuristic rapidly-exploring random trees method for manipulator motion planning. IEEE Access 8, 900–910 (2019)

    Article  Google Scholar 

  • Zhang, N., Zhang, Y., Ma, C., Wang, B.: Path planning of six-dof serial robots based on improved artificial potential field method. In: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, pp. 617–621 (2017)

  • Zhang, J.: Kinodynamic motion planning for robotics: a review. In: 2021 5th International Conference on Robotics and Automation Sciences (ICRAS). IEEE, pp. 75–83 (2021)

  • Zhang, T., Zhang, M., Zou, Y.: Time-optimal and smooth trajectory planning for robot manipulators. Int. J. Control Autom. Syst. 19(1), 521–531 (2021)

    Article  Google Scholar 

  • Zhao, M., Lv, X.: Improved manipulator obstacle avoidance path planning based on potential field method. J. Robot. 2020 (2020)

  • Zhou, D., Jia, R., Yao, H., Xie, M.: Robotic arm motion planning based on residual reinforcement learning. In: 2021 13th International Conference on Computer and Automation Engineering (ICCAE). IEEE, pp. 89–94 (2021)

  • Zimmermann, S., Hakimifard, G., Zamora, M., Poranne, R., Coros, S.: A multi-level optimization framework for simultaneous grasping and motion planning. IEEE Robot. Automat. Lett. 5(2), 2966–2972 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of Apera AI and Mathematics of Information Technology and Complex Systems (MITACS) under IT16412 Mitacs Accelerate. We would like to thank our colleague Ardeshir Shojaeinasab for sharing his literature analysis codes.

Funding

This work was supported by Apera AI and Mathematics of Information Technology and Complex Systems (MITACS) under IT16412 Mitacs Accelerate.

Author information

Authors and Affiliations

Authors

Contributions

MGT, conceptualization, formal analysis, investigation, visualization, writing-original draft, writing-review, and editing. MY, writing-original draft, writing-review, and editing. HN, writing-review and editing, supervision, and funding acquisition.

Corresponding author

Correspondence to Homayoun Najjaran.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics approval

Not applicable.

Consent to participate

All the authors of this article agreed to participate.

Consent for publication

All authors of this article agree to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamizi, M.G., Yaghoubi, M. & Najjaran, H. A review of recent trend in motion planning of industrial robots. Int J Intell Robot Appl 7, 253–274 (2023). https://doi.org/10.1007/s41315-023-00274-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-023-00274-2

Keywords

Navigation