Skip to main content
Log in

New Approaches to the Synthesis of Ultralow-Palladium Automotive Emission Control Catalysts

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

Laser electrodispersion has been used as an alternative to the chemical synthesis of palladium-containing catalysts. The thus produced catalysts supported on alumina and HZSM-5 zeolite have high catalytic activity and stability at ultralow palladium content (0.03 wt %) in a model reaction of CO oxidation under conditions of prompt thermal aging. According to X-ray photoelectron spectroscopy and transmission electron microscopy data, palladium in the catalyst samples predominantly occurs in the Pd0 state as fine particles about 2.0 nm in size, which almost completely cover the support surface. The textural characteristics of both supports are retained after the deposition of palladium. The modification of zeolite with palladium increases the adsorption capacity for hydrocarbons, which gives rise to a sorption effect in the temperature dependences of the CO conversion. The palladium-containing alumina-based catalyst demonstrated the best stability during heat treatment up to 1000°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Chinchilla, R. and Najera, C., Chem. Rev., 2013, vol. 114, no. 3, pp. 1783–1826. https://doi.org/10.1021/cr400133p

    Article  CAS  PubMed  Google Scholar 

  2. McCarthy, S., Braddock, D.C., and Wilton-Ely, J.D.E.T., Coord. Chem. Rev., 2021, vol. 442, p. 213925. https://doi.org/10.1016/j.ccr.2021.213925

    Article  CAS  Google Scholar 

  3. Mondal, S., Ballav, T., Biswas, K., Ghosh, S., and Ganesh, V., Eur. J. Org. Chem., 2021, vol. 2021, no. 33, pp. 4566–4602. https://doi.org/10.1002/ejoc.202100312

    Article  CAS  Google Scholar 

  4. Chernyshev, V.M. and Ananikov, V.P., ACS Catal., 2022, vol. 12, no. 2, pp. 1180–1200. https://doi.org/10.1021/acscatal.1c04705

    Article  CAS  Google Scholar 

  5. Datye, A.K., Bravo, J., Nelson, T.R., Atanasova, P., Lyubovsky, M., and Pfefferle, L., Appl. Catal., A, 2000, vol. 198, nos. 1–2, pp. 179–196. https://doi.org/10.1016/s0926‑860x(99)00512-8

  6. Monteiro, R.S., Dieguez, L.C., and Schmal, M., Catal. Today, 2001, vol. 65, no. 1, pp. 77–89. https://doi.org/10.1016/S0920-5861(00)00547-2

    Article  CAS  Google Scholar 

  7. Chen, M.S., Cal, Y., Yan, Z., Gath, K.K., Axnanda, S., and Goodman, D.W., Surf. Sci., 2007, vol. 601, no. 23, pp. 5326–5331. https://doi.org/10.1016/j.susc.2007.08.019

    Article  CAS  Google Scholar 

  8. Iglesias-Juez, A., Hungria, A.B., Martinez-Arias, A., Anderson, J.A., and Fernandez-Garcia, M., Catal. Today, 2009, vol. 143, nos. 3–4, pp. 195–202. https://doi.org/10.1016/j.cattod.2008.12.013

    Article  CAS  Google Scholar 

  9. Martin, J.C., Suarez, S., Yates, M., and Avila, P., Chem. Eng. J., 2009, vol. 150, no. 1, pp. 8–14. https://doi.org/10.1016/j.cej.2008.11.050

    Article  CAS  Google Scholar 

  10. Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Mishakov, I.V., Medvedev, D.A., and Noskov, A.S., Appl. Catal., B, 2011, vol. 103, nos. 3–4, pp. 397–403. https://doi.org/10.1016/j.apcatb.2011.02.002

    Article  CAS  Google Scholar 

  11. Ziaei-Azad, H., Khodadadi, A., Esmaeilnejad-Ahranjani, P., and Mortazavi, Y., Appl. Catal., B, 2001, vol. 102, nos. 1–2, pp. 62–70. https://doi.org/10.1016/j.apcatb.2010.11.025

    Article  CAS  Google Scholar 

  12. Shen, M., Wei, G., Yang, H., Wang, J., and Wang, X., Fuel, 2013, vol. 103, pp. 869–875. https://doi.org/10.1016/j.fuel.2012.09.040

    Article  CAS  Google Scholar 

  13. Say, Z., Dogac, M., Vovk, E.I., Kalay, Y.E., Kim, C.H., Li, W., and Ozensoy, E., Appl. Catal., B, 2014, vol. 154–155, pp. 51–61. https://doi.org/10.1016/j.apcatb.2014.01.038

    Article  CAS  Google Scholar 

  14. Onn, T.M., Monai, M., Dai, S., Fonda, E., Montini, T., Pan, X.Q., Graham, G.W., Fornasiero, P., and Gorte, R.J., J. Am. Chem. Soc., 2018, vol. 140, no. 14, pp. 4841–4848. https://doi.org/10.1021/jacs.7b12900

    Article  CAS  PubMed  Google Scholar 

  15. Spezzati, G. and Benavidez, A.D., DeLaRiva, A.T., Su, Y., Hofmann, J.P., Ssahina, S., Olivier, E.J., Neethling, J.H., Miller, J.T., Datye, A.K., and Hensen, E.J.M., Appl. Catal., B, 2019, vol. 243, pp. 36–46. https://doi.org/10.1016/j.apcatb.2018.10.015

    Article  CAS  Google Scholar 

  16. Lin, S., Yang, X., Yang, L., and Zhou, R., RSC Adv, 2015, vol. 5, no. 47, pp. 37353–37359. https://doi.org/10.1039/c5ra02797g

  17. Li, L., Zhang, N., Huang, X., Liu, Y., Li, Y., Zhang, G., Song, L., and He, H., ACS Catal., 2018, vol. 8, no. 4, pp. 3222–3231. https://doi.org/10.1021/acscatal.8b00358

    Article  CAS  Google Scholar 

  18. Vedyagin, A.A., Shubin, Y.V., Kenzhin, R.M., Plyusnin, P.E., Stoyanovskii, V.O., and Volodin, A.M., Top. Catal., 2018, vol. 62, nos. 1–4, pp. 305–314. https://doi.org/10.1007/s11244-018-1093-0

    Article  CAS  Google Scholar 

  19. Cai, L., Wang, K.-C., Zhao, M., Gong, M.-C., and Chen, Y.-Q., Acta Phys.-Chim. Sin., 2009, vol. 25, no. 5, pp. 859–863. https://doi.org/10.3866/PKU.WHXB20090506

    Article  CAS  Google Scholar 

  20. Tzimpilis, E., Moschoudis, N., Stoukides, M., and Bekiaroglou, P., Appl. Catal., B, 2008, vol. 84, nos. 3–4, pp. 607–615. https://doi.org/10.1016/j.apcatb.2008.05.016

    Article  CAS  Google Scholar 

  21. Gopinath, R., Seshu Babu, N., Vinod Kumar, J., Lingaiah, N., and Sai Prasad, P.S., Catal. Lett., 2007, vol. 120, nos. 3–4, pp. 312–319. https://doi.org/10.1007/s10562‑007‑9287-2

    Article  Google Scholar 

  22. Vedyagin, A.A., Volodin, A.M., Stoyanovskii, V.O., Kenzhin, R.M., Plyusnin, P.E., Shubin, Y.V., and Mishakov, I.V., Top. Catal., 2017, vol. 60, nos. 1–2, pp. 152–161. https://doi.org/10.1007/s11244-016-0726-4

    Article  CAS  Google Scholar 

  23. Forsythe, R.C., Cox, C.P., Wilsey, M.K., and Müller, A.M., Chem. Rev., 2021, vol. 121, no. 13, pp. 7568–7637. https://doi.org/10.1021/acs.chemrev.0c01069

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, J., Chaker, M., and Ma, D., J. Colloid Interface Sci., 2017, vol. 489, pp. 138–149. https://doi.org/10.1016/j.jcis.2016.07.050

    Article  CAS  PubMed  Google Scholar 

  25. Inogamov, N.A., Petrov, Yu.V., Khokhlov, V.A., and Zhakhovskii, V.V., High Temp., 2020, vol. 58, no. 4, pp. 632–646. https://doi.org/10.1134/S0018151X20040045

    Article  CAS  Google Scholar 

  26. Lokteva, E.S., Peristyy, A.A., Kavalerskaya, N.E., Golubina, E.V., Yashina, L.V., Rostovshchikova, T.N., Gurevich, S.A., Kozhevin, V.M., Yavsin, D.A., and Lunin, V.V., Pure Appl. Chem., 2012, vol. 84, no. 3, pp. 495–508. https://doi.org/10.1351/pac‑con‑11-07-12

    Article  CAS  Google Scholar 

  27. Rostovshchikova, T.N., Lokteva, E.S., Shilina, M.I., Golubina, E.V., Maslakov, K.I., Krotova, I.N., Bryzhin, A.A., Tarkhanova, I.G., Udalova, O.V., Kozhevin, V.M., Yavsin, D.A., and Gurevich, S.A., Russ. J. Phys. Chem., 2021, vol. 95, no. 3, pp. 495–508. https://doi.org/10.31857/s0044453721030183

    Article  Google Scholar 

  28. Kozhevin, V.M., Rostovshchikova, T.N., Yavsin, D.A., Zabelin, M.A., Smirnov, V.V., Gurevich, S.A., and Yassievich, I.N., Dokl. Phys. Chem., 2002, vol. 387, nos. 4–6, pp. 324–327. https://doi.org/10.1023/A:1021706931622

    Article  CAS  Google Scholar 

  29. Golubina, E.V., Rostovshchikova, T.N., Lokteva, E.S., Maslakov, K.I., Nikolaev, S.A., Egorova, T.B., Gurevich, S.A., Kozhevin, V.M., Yavsin, D.A., and Yermakov, A.Y., Pure Appl. Chem., 2018, vol. 90, no. 11, pp. 1685–1701. https://doi.org/10.1515/pac‑2018-0207

    Article  CAS  Google Scholar 

  30. Bryzhin, A.A., Golubina, E.V., Maslakov, K.I., Lokteva, E.S., Tarkhanova, I.G., Gurevich, S.A., Yavsin, D.A., and Rostovshchikova, T.N., ChemCatChem, 2020, vol. 12, no. 17, pp. 4396–4405. https://doi.org/10.1002/cctc.202000501

    Article  CAS  Google Scholar 

  31. Rostovshchikova, T.N., Shilina, M.I., Golubina, E.V., Lokteva, E.S., Krotova, I.N., Nikolaev, S.A., Maslakov, K.I., and Yavsin, D.A., Russ. Chem. Bull., 2015, vol. 64, no. 4, pp. 812–818. https://doi.org/10.1007/s11172-015-0938-y

    Article  CAS  Google Scholar 

  32. Lokteva, E.S., Rostovshchikova, T.N., Kachevskii, S.A., Golubina, E.V., Smirnov, V.V., Stakheev, A.Y., Telegina, N.S., Gurevich, S.A., Kozhevin, V.M., and Yavsin, D.A., Kinet. Catal., 2008, vol. 49, no. 5, pp. 748–755. https://doi.org/10.1134/s0023158408050212

    Article  CAS  Google Scholar 

  33. Golubina, E.V., Rostovshchikova, T.N., Lokteva, E.S., Maslakov, K.I., Nikolaev, S.A., Shilina, M.I., Gurevich, S.A., Kozhevin, V.M., Yavsin, D.A., and Slavinskaya, E.M., Appl. Surf. Sci., 2021, vol. 536, p. 147656. https://doi.org/10.1016/j.apsusc.2020.147656

    Article  CAS  Google Scholar 

  34. Rostovshchikova, T.N., Nikolaev, S.A., Krotova, I.N., Maslakov, K.I., Udalova, O.V., Gurevich, S.A., Yavsin, D.A., and Shilina, M.I., Russ. Chem. Bull., 2022, vol. 71, no. 6, pp. 1179–1193. https://doi.org/10.1007/s11172-022-3519-x

    Article  CAS  Google Scholar 

  35. Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Stoyanovskii, V.O., Shubin, Y.V., Plyusnin, P.E., and Mishakov, I.V., Catal. Today, 2017, vols. 293–294, pp. 73–81. https://doi.org/10.1016/j.cattod.2016.10.010

    Article  CAS  Google Scholar 

  36. Vedyagin, A.A., Plyusnin, P.E., Rybinskaya, A.A., Shubin, Y.V., Mishakov, I.V., and Korenev, S.V., Mater. Res. Bull., 2018, vol. 102, pp. 196–202. https://doi.org/10.1016/j.materresbull.2018.02

    Article  CAS  Google Scholar 

  37. Vedyagin, A.A., Kenzhin, R.M., Tashlanov, M.Y., Stoyanovskii, V.O., Plyusnin, P.E., Shubin, Y.V., Mishakov, I.V., Kalinkin, A.V., Smirnov, M.Y., and Bukhtiyarov, V.I., Emiss. Control Sci. Technol., 2019, vol. 5, no. 4, pp. 363–377. https://doi.org/10.1007/s40825-019-00133-2

    Article  CAS  Google Scholar 

  38. Vedyagin, A.A., Stoyanovskii, V.O., Kenzhin, R.M., Plyusnin, P.E., Shubin, Y.V., and Volodin, A.M., Mater. Sci. Forum, 2019, vol. 950, pp. 185–189. https://doi.org/10.4028/www.scientific.net/MSF.950.185

    Article  Google Scholar 

  39. Vedyagin, A.A., Volodin, A.M., Kenzhin, R.M., Stoyanovskii, V.O., Rogov, V.A., Medvedev, D.A., and Mishakov, I.V., J. Therm. Anal. Calorim., 2017, vol. 130, no. 3, pp. 1865–1874. https://doi.org/10.1007/s10973-017-6530-y

    Article  CAS  Google Scholar 

  40. Pillo, T., Zimmermann, R., Steiner, P., and Hüfner, S., J. Phys.: Condens. Matter, 1997, vol. 9, no. 19, pp. 3987–3999. https://doi.org/10.1088/0953-8984/9/19/018

    Article  CAS  Google Scholar 

  41. Temerev, V.L., Vedyagin, A.A., Iost, K.N., Pirutko, L.V., Cherepanova, S.V., Kenzhin, R.M., Stoyanovskii, V.O., Trenikhin, M.V., and Shlyapin, D.A., React. Kinet. Catal. Lett., 2019, vol. 127, no. 2, pp. 945–959. https://doi.org/10.1007/s11144-019-01588-8

    Article  CAS  Google Scholar 

  42. Starokon, E.V., Vedyagin, A.A., Pirutko, L.V., and Mishakov, I.V., J. Porous Mater., 2015, vol. 22, no. 2, pp. 521–527. https://doi.org/10.1007/s10934-015-9922-z

    Article  CAS  Google Scholar 

  43. Temerev, V.L., Vedyagin, A.A., Afonasenko, T.N., Iost, K.N., Kotolevich, Y.S., Baltakhinov, V.P., and Tsyrulnikov, P.G., React. Kinet. Catal. Lett., 2016, vol. 119, no. 2, pp. 629–640. https://doi.org/10.1007/s11144-016-1060-3

    Article  CAS  Google Scholar 

  44. Kustov, L., Golubeva, V., Korableva, A., Anischenko, O., Yegorushina, N., and Kapustin, G., Microporous Mesoporous Mater., 2018, vol. 260, pp. 54–58. https://doi.org/10.1016/j.micromeso.2017.06.050

    Article  CAS  Google Scholar 

  45. Kim, H., Jang, E., Jeong, Y., Kim, J., Kang, C.Y., Kim, C.H., Baik, H., Lee, K.-Y., and Choi, J., Catal. Today, 2018, vol. 314, pp. 78–93. https://doi.org/10.1016/j.cattod.2018.02.008

    Article  CAS  Google Scholar 

  46. Yusuf, A.A. and Inambao, F.L., Case Stud. Therm. Eng., 2019, vol. 14, p. 100417. https://doi.org/10.1016/j.csite.2019.100417

    Article  Google Scholar 

  47. Reiter, M.S. and Kockelman, K.M., Transp. Res. D: Transp. Environ., 2016, vol. 43, pp. 123–132. https://doi.org/10.1016/j.trd.2015.12.012

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using equipment purchased under the Development Program of Moscow State University.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation under state assignments for the Ioffe Institute, RAS (project no. 0040-2019-0010); Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Science, Novosibirsk, Russia (project no. AAAA-A21-121011390054-1), and Moscow State University, Moscow, Russia (project no. АААА-А21-121011590090-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Rostovshchikova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by V. Glyanchenko

This work was submitted to the special issue “Heterogeneous Catalysis and Environmental Protection.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rostovshchikova, T.N., Shilina, M.I., Gurevich, S.A. et al. New Approaches to the Synthesis of Ultralow-Palladium Automotive Emission Control Catalysts. Dokl Phys Chem 506, 123–130 (2022). https://doi.org/10.1134/S001250162260019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001250162260019X

Keywords:

Navigation