Skip to main content
Log in

Palladium-Based Electroactive Materials for Environmental Catalysis

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

A method has been proposed and justified to fabricate palladium-based electroactive materials by electrochemical dispersion of palladium under the action of a pulsed alternating current. The effect of the nature of the electrolyte on the composition and microstructural characteristics of palladium-containing catalysts has been studied by thermogravimetric analysis, UV-Vis spectroscopy, X-ray fluorescence analysis, X-ray powder diffraction analysis, and transmission electron microscopy. A set of the most probable chemical and electrochemical processes occurring under the action of pulsed alternating current and causing the formation of Pd and PdO nanoparticles has been considered. The effect of the synthesis parameters and the nature of the electrolyte on the activity of the obtained catalysts has been investigated. It has been shown that the electrocatalytic activity of Pd–PdO/C materials in the oxidation of ethanol in an alkaline medium is determined by the presence of an oxide phase in the catalyst composition and the size of palladium particles; this activity is maximum for materials with a slight predominance of PdO and with palladium particle sizes of more than 10 nm. For the oxidation of formic acid in an acid medium, catalysts with a minimum content of the oxide phase are more active, which is due to differences between the mechanisms of oxidation of formic acid and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Chernyshev, V.M. and Ananikov, V.P., ACS Catal., 2022, vol. 12, no. 2, pp. 1180–1200. https://doi.org/10.1021/acscatal.1c04705

    Article  CAS  Google Scholar 

  2. Wang, J., Chen, H., Hu, Z., Yao, M., and Li, Y., Catal. Rev. Sci. Eng., 2015, vol. 57, no. 1, pp. 79–144. https://doi.org/10.1080/01614940.2014.977059

    Article  CAS  Google Scholar 

  3. Chen, C.S., Wan, J.H., and Yeo, B.S., J. Phys. Chem. A, 2015, vol. 119, no. 48, pp. 26875–26882. https://doi.org/10.1021/acs.jpcc.5b09144

    Article  CAS  Google Scholar 

  4. Grünwald, A., Orth, N., Scheurer, A., Heinemann, F.W., Pöthig, A., and Mun, D., Angew. Chem., Int. Ed., 2018, vol. 57, no. 49, pp. 16228–16232. https://doi.org/10.1002/anie.201809152

    Article  CAS  Google Scholar 

  5. Sarkar, S. and Peter, S.C., Inorg. Chem. Front., 2018, vol. 5, no. 9, pp. 2060–2080. https://doi.org/10.1039/C8QI00042E

    Article  CAS  Google Scholar 

  6. Ong, B.C., Kamarudin, S.K., and Basri, S., Int. J. Hydrog. Energy, 2017, vol. 42, no. 15, pp. 10142–10157. https://doi.org/10.1016/j.ijhydene.2017.01.117

    Article  CAS  Google Scholar 

  7. Calderón Gómez, J.C., Moliner, R., and Lázaro, M.J., Catalysts, 2016, vol. 6, no. 9, p. 130. https://doi.org/10.3390/catal6090130

    Article  CAS  Google Scholar 

  8. Wang, Y., Zou, S., Cai, and W.B., Catalysts, 2015, vol. 5, no. 3, pp. 1507–1534. https://doi.org/10.3390/catal5031507

    Article  CAS  Google Scholar 

  9. Bratan, V., Munteanu, C., Hornoiu, C., Vasile, A., Papa, F., State, R., Preda, S., Culita, D., and Ionescu, N.I., Appl. Catal. B: Environ., 2017, vol. 207, pp. 166–173. https://doi.org/10.1016/j.apcatb.2017.02.017

    Article  CAS  Google Scholar 

  10. Nilsson, J., Carlsson, P.A., Martin, N.M., Adams, E.C., Agostini, G., Grönbeck, H., and Skoglundh, M., J. Catal., 2017, vol. 356, pp. 237–245. https://doi.org/10.1016/j.jcat.2017.10.018

    Article  CAS  Google Scholar 

  11. Wang, C., Zhao, P., and Liu, S., Phys. Status Solidi A, 2015, vol. 212, no. 8, pp. 1789–1794.https://doi.org/10.1002/pssa.201431892

  12. Lupan, O., Postica, V., Hoppe, M., Wolff, N., Polonskyi, O., Pauporté, T., Viana, B., Majerus, O., Kienle, L., Faypel, F., and Adelung, R., Nanoscale, 2018, vol. 10, no. 29, pp. 14107–14127. https://doi.org/10.1039/C8NR03260B

    Article  CAS  PubMed  Google Scholar 

  13. Li, L., Li, G., and Yuan, Y., RSC Adv., 2015, vol. 5, no. 6, pp. 4586–4591. https://doi.org/10.1039/C4RA12800A

    Article  CAS  Google Scholar 

  14. Zhang, Y., Yang, W., Wang, Y., Jia, J., and Wang, J., Mikrochim. Acta, 2013, vol. 180, no. 11, pp. 1085–1091. https://doi.org/10.1007/s00604-013-1033-4

    Article  CAS  Google Scholar 

  15. Shen, S. and Zhao, T., J. Mater. Chem. A, 2013, vol. 1, no. 3, pp. 906–912. https://doi.org/10.1039/C2TA00725H

    Article  CAS  Google Scholar 

  16. Yu, E.H., Wang, X., Krewer, U., Li, L., and Scott, K., Energy Environ. Sci., 2012, vol. 5, no. 2, pp. 5668–5680. https://doi.org/10.1039/C2EE02552C

    Article  CAS  Google Scholar 

  17. Rao, V., Cremers, C., and Stimming, U., Fuel Cells, 2007, vol. 7, no. 5, pp. 417–423. https://doi.org/10.1002/fuce.200700026

    Article  CAS  Google Scholar 

  18. Wang, L., Lavacchi, A., Bevilacqua, M., Bellini, M., Fornasiero, P., Filippi, J., Innocenti, M., Marchionni, A., Miller, H.A., and Vizza, F., ChemCatChem, 2015, vol. 7, no. 14, pp. 2214–2221. https://doi.org/10.1002/cctc.201500189

    Article  CAS  Google Scholar 

  19. Jung, N., Chung, D.Y., Ryu, J., Yoo, S.J., and Sung, Y.E., Nano Today, 2014, vol. 9, no. 4, pp. 433–456. https://doi.org/10.1016/j.nantod.2014.06.006

    Article  CAS  Google Scholar 

  20. Bianchini, C. and Shen, P.K., Chem. Rev., 2009, vol. 109, no. 9, pp. 4183–4206. https://doi.org/10.1021/cr9000995

    Article  CAS  PubMed  Google Scholar 

  21. Shao, M., Odell, J., Humbert, M., Yu, T., and Xia, Y., J. Phys. Chem. C, 2013, vol. 117, no. 8, pp. 4172–4180. https://doi.org/10.1021/jp312859x

    Article  CAS  Google Scholar 

  22. Lee, S., Jeong, H., and Chung, Y.-M., J. Catal., 2018, vol. 365, pp. 125–137. https://doi.org/10.1016/j.jcat.2018.06.024

    Article  CAS  Google Scholar 

  23. Belskaya, O.B., Mironenko, R.M., Talsi, V.P., Rodionov, V.A., Gulyaeva, T.I., Sysolyatin, S.V., and Likholobov, V.A., Catal. Today, 2018, vol. 301, pp. 258–265. https://doi.org/10.1016/j.cattod.2017.02.037

  24. Lee, S. and Chung, Y.-M., Mater. Lett., 2019, vol. 234, pp. 58–61. https://doi.org/10.1016/j.matlet.2018.09.068

    Article  CAS  Google Scholar 

  25. Forsythe, R.C., Cox, C.P., Wilsey, M.K., and Muller, A.M., Chem. Rev., 2021, vol. 121, no. 13, pp. 7568–7637. https://doi.org/10.1021/acs.chemrev.0c01069

    Article  CAS  PubMed  Google Scholar 

  26. Rostovshchikova, T.N., Lokteva, E.S., Shilina, M.I., Golubina, E.V., Maslakov, K.I., Krotova, I.N., Bryzhina, A.A., Tarkhanova, I.G., Udalova, O.V., Kozhevin, V.M., Yavsin, D.A., and Gurevich, S.A., Russ. J. Phys. Chem., A, 2021, vol. 95, no. 3, pp. 451–474. https://doi.org/10.1134/S0036024421030171

    Article  CAS  Google Scholar 

  27. Leontyev, I., Kuriganova, A., Kudryavtsev, Y., Dkhil, B., and Smirnova, N., Appl. Catal., A, 2012, vol. 431, pp. 120–125. https://doi.org/10.1016/j.apcata.2012.04.025

  28. Kuriganova, A.B., Leontyev, I.N., Alexandrin, A.S., Maslova, O.A., Rakhmatullin, A.I., and Smirnova, N.V., Mendeleev Commun., 2017, vol. 1, no. 27, pp. 67–69. https://doi.org/10.1016/j.mencom.2017.01.021

    Article  CAS  Google Scholar 

  29. Doronkin, D.E., Kuriganova, A B., Leontyev, I.N., Baier, S., Lichtenberg, H., Smirnova, N.V., and Grunwaldt, J.D., Catal. Lett., 2016, vol. 146, no. 2, pp. 452–463. https://doi.org/10.1007/s10562-015-1651-z

    Article  CAS  Google Scholar 

  30. Kuriganova, A.B., Leontyeva, D.V., Ivanov, S., Bund, A., and Smirnova, N.V., J. Appl. Electrochem., 2016, vol. 46, no. 12, pp. 1245–1260. https://doi.org/10.1007/s10800-016-1006-5

    Article  CAS  Google Scholar 

  31. Kuriganova, A.B., Faddeev, N.A., Leontyev, I.N., Allix, M., Rakhmatullin, A., and Smirnova, N.V., ChemistrySelect, 2019, vol. 4, no. 29, pp. 8390–8393. https://doi.org/10.1002/slct.201901628

    Article  CAS  Google Scholar 

  32. Novikova, K., Kuriganova, A., Leontyev, I., Gerasimova, E., Maslova, O., Rakhmatullin, A., Smirnova, N., and Dobrovolsky, Y., Electrocatalysis, 2018, vol. 9, no. 1, pp. 22–30. https://doi.org/10.1007/s12678-017-0416-4

    Article  CAS  Google Scholar 

  33. Grdeń, M., Łukaszewski, M., Jerkiewicz, G., and Czerwiński, A., Electrochim. Acta, 2008, vol. 53, no. 26, pp. 7583–7598. https://doi.org/10.1016/j.electacta.2008.05.046

    Article  CAS  Google Scholar 

  34. Meng, H., Zeng, D., Xie, F., Catalysts, 2015, vol. 5, no. 3, pp. 1221–1274. https://doi.org/10.3390/catal5031221

    Article  CAS  Google Scholar 

  35. Cruywagen, J.J. and Kriek, R.J., J. Coord. Chem., 2007, vol. 60, no. 4, pp. 439–447. https://doi.org/10.1080/00958970600873588

    Article  CAS  Google Scholar 

  36. Rusanova, M.Y., Tsirlina, G.A., Petrii, O.A., Safonova, T.Y., and Vasil’ev, S.Y., Russ. J. Electrochem., 2000, vol. 36, no 5, pp. 457–464. https://doi.org/10.1007/BF02757406

    Article  CAS  Google Scholar 

  37. Wu, T., Han, M.Y., and Xu, Z.J., ACS Nano, 2022, vol. 16, no 6. P. 8531–8539. https://doi.org/10.1021/acsnano.2c04603

    Article  CAS  PubMed  Google Scholar 

  38. Ju, W., Valiollahi, R., Ojani, R., Schneider, O., and Stimming, U., Electrocatalysis, 2016, vol.7, no. 2, pp.149–158. https://doi.org/10.1007/s12678-015-0293-7

    Article  CAS  Google Scholar 

  39. Petrii, O.A., Russ. J. Electrochem., 2019, vol. 55, no. 1, pp. 1–33. https://doi.org/10.1134/S1023193519010129

    Article  CAS  Google Scholar 

  40. Zhou, Y., Zhu, X., Zhang, B., Ye, D.D., Chen, R., and Liao, Q., Int. J. Hydrog. Energy, 2020, vol. 45, no. 53, pp. 29235–29245. https://doi.org/10.1016/j.ijhydene.2020.07.169

    Article  CAS  Google Scholar 

  41. Zhang, B., Ye, D., Li, J., Zhu, X., and Liao, Q., J. Power Sources, 2012, vol. 214, pp. 277–284. https://doi.org/10.1016/j.jpowsour.2012.04.007

    Article  CAS  Google Scholar 

  42. Mazumder, V. and Sun, S., J. Am. Chem. Soc., 2009, vol. 131, no. 13, pp. 4588–4589. https://doi.org/10.1021/ja9004915

    Article  CAS  PubMed  Google Scholar 

  43. Barzegar, H.R., Hu, G., Larsen, C., Jia, X., Edman, L., and Wågberg, T., Carbon, 2014, vol. 73, pp. 34–40. https://doi.org/10.1016/j.carbon.2014.02.028

    Article  CAS  Google Scholar 

  44. Alvarenga, G.M., Gallo, I.B., and Villullas, H.M., J. Catal., 2017, vol. 348, pp. 1–8. https://doi.org/10.1016/j.jcat.2017.02.002

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed within the framework of the Strategic Project “Hydrogen Energy Systems,” a part of the Platov South Russian State Polytechnic University (NPI) Development Program for the implementation of the Program of Strategic Academic Leadership “Priority-2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Smirnova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by V. Glyanchenko

This work was submitted to the special issue “Heterogeneous Catalysis and Environmental Protection.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faddeev, N.A., Kuriganova, A.B., Leont’ev, I.N. et al. Palladium-Based Electroactive Materials for Environmental Catalysis. Dokl Phys Chem 507, 139–146 (2022). https://doi.org/10.1134/S0012501622700063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0012501622700063

Keywords:

Navigation