Skip to main content
Log in

A 2D pillared-bilayer iron-based metal–organic framework: syntheses, crystal structure, UV-light photocatalytic and heterogeneous Fenton-like catalytic activities

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) pillared-bilayer iron-based metal–organic framework (MOF), [Fe2(aip)2(bpy)2]·(H2O)(DMF) (1) (where H2aip = 5-aminoisophthalic acid, bpy = 4,4'-bipyridine, DMF = N,N-dimethylformamide), was solvo/hydrothermally synthesized using H2aip, bpy and ferrous sulfate heptahydrate as raw materials in DMF/H2O mixed solvent. The structure and properties of 1 were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis, thermogravimetric analysis, infrared spectroscopy and UV–vis diffuse reflectance spectroscopy. In 1, each Fe(II) ion exhibits a distorted octahedral geometry, while the aip2− and bpy ligands adopt the chelating/bridging bis-bidentate (μ3112) and bridging bidentate (μ211) coordination modes, respectively. Infinite one-dimensional [Fe2(aip)2]n chains extending along the a axis are formed through bridging and chelating carboxylate groups of aip2− ligands and are further cross-linked by bpy ligands along the b axis to generate an infinite 2D pillared-bilayer framework with an interdigitated structure. Fe-MOF 1 shows both UV-light photocatalytic activity and Fenton-like catalytic activity toward the degradation of rhodamine B solution, which can be potentially applied in environmental remediation such as industrial wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cheng M, Lai C, Liu Y, Zeng G, Huang D, Zhang C, Qin L, Hu L, Zhou C, Xiong W (2018) Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord Chem Rev 368:80–92

    Article  CAS  Google Scholar 

  2. Viciano-Chumillas M, Mon M, Ferrando-Soria J, Corma A, Leyva-Pérez A, Armentano D, Pardo E (2020) Metal–organic frameworks as chemical nanoreactors: synthesis and stabilization of catalytically active metal species in confined spaces. Acc Chem Res 53(2):520–531

    Article  CAS  PubMed  Google Scholar 

  3. Feng M, Zhang P, Zhou H-C, Sharma VK (2018) Water-stable metal-organic frameworks for aqueous removal of heavy metals and radionuclides: a review. Chemosphere 209:783–800

    Article  CAS  PubMed  Google Scholar 

  4. Liu X, Zhou Y, Zhang J, Tang L, Luo L, Zeng G (2017) Iron containing metal–organic frameworks: structure, synthesis, and applications in environmental remediation. ACS Appl Mater Inter 9(24):20255–20275

    Article  CAS  Google Scholar 

  5. Mon M, Bruno R, Ferrando-Soria J, Armentano D, Pardo E (2018) Metal–organic framework technologies for water remediation: towards a sustainable ecosystem. J Mater Chem A 6(12):4912–4947

    Article  CAS  Google Scholar 

  6. Li J, Wang X, Zhao G, Chen C, Chai Z, Alsaedi A, Hayat T, Wang X (2018) Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev 47(7):2322–2356

    Article  CAS  PubMed  Google Scholar 

  7. Hosono N, Uemura T (2021) Metal–organic frameworks as versatile media for polymer adsorption and separation. Acc Chem Res 54(18):3593–3603

    Article  CAS  PubMed  Google Scholar 

  8. He T, Kong X-J, Li J-R (2021) Chemically stable metal–organic frameworks: rational construction and application expansion. Acc Chem Res 54(15):3083–3094

    Article  CAS  PubMed  Google Scholar 

  9. Lei B, Wang M, Jiang Z, Qi W, Su R, He Z (2018) Constructing redox-responsive metal–organic framework nanocarriers for anticancer drug delivery. ACS Appl Mater Inter 10(19):16698–16706

    Article  CAS  Google Scholar 

  10. Zhu Y, Zhou X, Li L, You Y, Huang W (2017) A water-stable metal-organic framework as a luminescent Fe3+ sensor under weak acidic and weak basic conditions. Sci China Chem 60(12):1581

    Article  CAS  Google Scholar 

  11. Lin R-B, Zhang Z, Chen B (2021) Achieving high performance metal–organic framework materials through pore engineering. Acc Chem Res 54(17):3362–3376

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z, Kirlikovali KO, Li P, Farha OK (2022) Reticular chemistry for highly porous metal–organic frameworks: the chemistry and applications. Acc Chem Res 55(4):579–591

    Article  CAS  PubMed  Google Scholar 

  13. Ge JL, Liu LL, Shen YH (2017) Facile synthesis of amine-functionalized UiO-66 by microwave method and application for methylene blue adsorption. J Porous Mater 24(3):647–655

    Article  CAS  Google Scholar 

  14. Guesh K, Caiuby CAD, Mayoral Á, Díaz-García M, Díaz I, Sanchez-Sanchez M (2017) Sustainable preparation of mil-100(fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst Growth Des 17(4):1806–1813

    Article  CAS  Google Scholar 

  15. Horike S, Sugimoto M, Kongpatpanich K, Hijikata Y, Inukai M, Umeyama D, Kitao S, Seto M, Kitagawa S (2013) Fe2+-based layered porous coordination polymers and soft encapsulation of guests via redox activity. J Mater Chem A 1(11):3675–3679

    Article  CAS  Google Scholar 

  16. Nasalevich MA, van der Veen M, Kapteijn F, Gascon J (2014) Metal–organic frameworks as heterogeneous photocatalysts: advantages and challenges. CrystEngComm 16(23):4919–4926

    Article  CAS  Google Scholar 

  17. Dhakshinamoorthy A, Asiri AM, Garcia H (2016) Metal-organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed 55(18):5414–5445

    Article  CAS  Google Scholar 

  18. Chambers MB, Wang X, Ellezam L, Ersen O, Fontecave M, Sanchez C, Rozes L, Mellot-Draznieks C (2017) Maximizing the photocatalytic activity of metal–organic frameworks with aminated-functionalized linkers: substoichiometric effects in MIL-125-NH2. J Am Chem Soc 139(24):8222–8228

    Article  CAS  PubMed  Google Scholar 

  19. Wang DK, Li ZH (2017) Iron-based metal-organic frameworks (MOFs) for visible-light-induced photocatalysis. Res Chem Intermed 43(9):5169–5186

    Article  CAS  Google Scholar 

  20. Laurier KGM, Vermoortele F, Ameloot R, De Vos DE, Hofkens J, Roeffaers MBJ (2013) Iron(III)-based metal–organic frameworks as visible light photocatalysts. J Am Chem Soc 135(39):14488–14491

    Article  CAS  PubMed  Google Scholar 

  21. Wang H-N, Meng X, Qin C, Wang X-L, Yang G-S, Su Z-M (2012) A series of pillar-layer metal–organic frameworks based on 5-aminoisophthalic acid and 4,4′-bipyridine. Dalton Trans 41(3):1047–1053

    Article  CAS  PubMed  Google Scholar 

  22. Xu W-Q, He S, Lin C-C, Qiu Y-X, Liu X-J, Jiang T, Liu W-T, Zhang X-L, Jiang J-J (2018) A copper based metal-organic framework: synthesis, modification and VOCs adsorption. Inorg Chem Commun 92:1–4

    Article  Google Scholar 

  23. Zhang LJ, Yanhong LI, Chen FY, Huiyong WU, Chen X (2013) Synthesis, crystal structure and magnetic properties of a one-dimensional loop-like iron(II) complex: [Fe(Haip)2(H2O)2]n (Haip = 5-ammoniumisophthalato). Chin J Struct Chem 32(4):550–556

    CAS  Google Scholar 

  24. Song W-D, Yan J-B, Ji L-L, Wang H (2008) Poly[[(μ4-5-aminoisophthalato)aquairon(II)] dihydrate]. Acta Crystallograph Sect E 64(4):m549

    Article  CAS  Google Scholar 

  25. Xu DX, Wang CC, Wang P, Li J, Guo XX, Gao SJ (2017) Two novel 2D coordination polymers constructed from 5-aminoisophthalic acid and 4,4′-bipyridyl ligands: syntheses, crystal structure, and photocatalytic performance. J Mol Struct 1135:129–137

    Article  CAS  Google Scholar 

  26. Xin Y, Zhou J, Xing YH, Bai FY, Sun LX (2021) A series of porous 3D inorganic–organic hybrid framework crystalline materials based on 5-aminoisophthalic acid for photocatalytic degradation of crystal violet. New J Chem 45(7):3432–3440

    Article  CAS  Google Scholar 

  27. Parshamoni S, Sanda S, Jena HS, Konar S (2014) A copper based pillared-bilayer metal organic framework: Its synthesis, sorption properties and catalytic performance. Dalton Trans 43(19):7191–7199

    Article  CAS  PubMed  Google Scholar 

  28. Ghasempour H, Azhdari Tehrani A, Morsali A, Wang J, Junk PC (2016) Two pillared metal–organic frameworks comprising a long pillar ligand used as fluorescent sensors for nitrobenzene and heterogeneous catalysts for the knoevenagel condensation reaction. CrystEngComm 18(14):2463–2468

    Article  CAS  Google Scholar 

  29. Zhang X, Zhu B, Guo F (2009) Hydrothermal synthesis and crystal structure of 5-aminoisophthalic acid with 4,4’-bipyridine forming helical chains via hydrogen bonds. Asian J Chem 21(9):7072–7076

    CAS  Google Scholar 

  30. Tomohiro F, Satoshi H, Yasutaka I, Keiji N, Yoshiki K, Masaki T, Susumu K (2010) Solid solutions of soft porous coordination polymers: fine-tuning of gas adsorption properties. Angew Chem Int Ed 49(28):4820–4824

    Article  Google Scholar 

  31. Horike S, Tanaka D, Nakagawa K, Kitagawa S (2007) Selective guest sorption in an interdigitated porous framework with hydrophobic pore surfaces. Chem Commun 32:3395–3397

    Article  Google Scholar 

  32. Li X, Guan T, Guo X, Li X (2014) Yu Z (2014) Construction of metal–organic frameworks consisting of dinuclear metal units based on 5-hydroxyisophthalate and flexible dipyridyl ligands. Eur J Inorg Chem 13:2307–2316

    Article  Google Scholar 

  33. Tao J, Chen X-M, Huang R-B, Zheng L-S (2003) Hydrothermal syntheses and crystal structures of two rectangular grid coordination polymers based on unique prismatic [M8(ip)8(4,4′-bipy)8] building blocks [M=Ni(II) or Cd(II), ip=isophthalate, bipy=bipyridine]. J Solid State Chem 170(1):130–134

    Article  CAS  Google Scholar 

  34. Tian G, Zhu G, Fang Q, Guo X, Xue M, Sun J, Qiu S (2006) Design, synthesis and fluorescence of two-dimensional pillared layers by connecting infinite one-dimensional chains via 4,4′-bipyridine. J Mol Struct 787(1):45–49

    Article  CAS  Google Scholar 

  35. Zhang Z, Li X, Liu B, Zhao Q, Chen G (2016) Hexagonal microspindle of NH2-MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene. RSC Adv 6(6):4289–4295

    Article  CAS  Google Scholar 

  36. Howarth AJ, Peters AW, Vermeulen NA, Wang TC, Hupp JT, Farha OK (2017) Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chem Mater 29(1):26–39

    Article  CAS  Google Scholar 

  37. Singh S, Parveen N, Gupta H (2018) Adsorptive decontamination of rhodamine-B from water using banana peel powder: a biosorbent. Environ Technol Inno 12:189–195

    Article  Google Scholar 

  38. Wu Y, Feng J, Xie B, Zou LK, Li YL, Li ZQ (2017) An extremely stable 2D zinc(II) coordination polymer exhibiting high sensing ability and photocatalytic degradation activities of dyes. J Inorg Organomet Polym 27(5):1243–1251

    Article  CAS  Google Scholar 

  39. Xu J, Zheng X, Feng Z, Lu Z, Zhang Z, Huang W, Li Y, Vuckovic D, Li Y, Dai S, Chen G, Wang K, Wang H, Chen JK, Mitch W, Cui Y (2021) Organic wastewater treatment by a single-atom catalyst and electrolytically produced H2O2. Nat Sustain 4(3):233–241

    Article  PubMed  Google Scholar 

  40. Lv H, Zhao H, Cao T, Qian L, Wang Y, Zhao G (2015) Efficient degradation of high concentration azo-dye wastewater by heterogeneous fenton process with iron-based metal-organic framework. J Mol Catal A Chem 400:81–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Science and Technology Research Project of the Education Department of Jiangxi Province (No. 201708), the National Natural Science Foundation of China (No. 21561028), and the College Students Innovation and Entrepreneurship Training Program of Jiangxi Province (No. S202110416002).

Funding

Science and Technology Research Project of the Education Department of Jiangxi Province,201708,National Natural Science Foundation of China,21561028,College Students Innovation and Entrepreneurship Training Program of Jiangxi Province,S202110416002

Author information

Authors and Affiliations

Authors

Contributions

Laijun Zhang wrote the main manuscript text and prepared all figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Laijun Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1677 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Huang, H., Li, D. et al. A 2D pillared-bilayer iron-based metal–organic framework: syntheses, crystal structure, UV-light photocatalytic and heterogeneous Fenton-like catalytic activities. Transit Met Chem 48, 47–54 (2023). https://doi.org/10.1007/s11243-023-00522-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-023-00522-1

Navigation