Skip to main content
Log in

Impact of Morphology in the Genotype and Phenotype Correlation of Bilateral Macronodular Adrenocortical Disease (BMAD): A Series of Clinicopathologically Well-Characterized 35 Cases

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Bilateral macronodular adrenocortical disease (BMAD) is characterized by the development of adrenal macronodules resulting in a pituitary-ACTH independent Cushing’s syndrome. Although there are important similarities observed between the rare microscopic descriptions of this disease, the small series published are not representative of the molecular and genetic heterogenicity recently described in BMAD. We analyzed the pathological features in a series of BMAD and determined if there is correlation between these criteria and the characteristics of the patients. Two pathologists reviewed the slides of 35 patients who underwent surgery for suspicion of BMAD in our center between 1998 and 2021. An unsupervised multiple factor analysis based on microscopic characteristics divided the cases into 4 subtypes according to the architecture of the macronodules (containing or not round fibrous septa) and the proportion of the different cell types: clear, eosinophilic compact, and oncocytic cells. The correlation study with genetic revealed subtype 1 and subtype 2 are associated with the presence of ARMC5 and KDM1A pathogenic variants, respectively. By immunohistochemistry, all cell types expressed CYP11B1 and HSD3B1. HSD3B2 staining was predominantly expressed by clear cells whereas CYP17A1 staining was predominant on compact eosinophilic cells. This partial expression of steroidogenic enzymes may explain the low efficiency of cortisol production in BMAD. In subtype 1, trabeculae of eosinophilic cylindrical cells expressed DAB2 but not CYP11B2. In subtype 2, KDM1A expression was weaker in nodule cells than in normal adrenal cells; alpha inhibin expression was strong in compact cells. This first microscopic description of a series of 35 BMAD reveals the existence of 4 histopathological subtypes, 2 of which are strongly correlated with the presence of known germline genetic alterations. This classification emphasizes that BMAD has heterogeneous pathological characteristics that correlate with some genetic alterations identified in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Kirschner MA, Powell RD, Lipsett MB (1964) Cushing’s Syndrome: Nodular Cortical Hyperplasia of Adrenal Glands with Clinical and Pathological Features Suggesting Adrenocortical Tumor. J Clin Endocrinol Metab 24:947–955. https://doi.org/10.1210/jcem-24-10-947

    Article  CAS  PubMed  Google Scholar 

  2. Pakbaz S, Mete O (2019) Adrenal cortical neoplasia: from histology to molecular biology. Diagnostic Histopathology 25:178–189. https://doi.org/10.1016/j.mpdhp.2019.02.004

    Article  Google Scholar 

  3. Hodgson A, Pakbaz S, Mete O (2019) A Diagnostic Approach to Adrenocortical Tumors. Surgical Pathology Clinics 12:967–995. https://doi.org/10.1016/j.path.2019.08.005

    Article  PubMed  Google Scholar 

  4. Juhlin CC, Bertherat J, Giordano TJ, Hammer GD, Sasano H, Mete O (2021) What Did We Learn from the Molecular Biology of Adrenal Cortical Neoplasia? From Histopathology to Translational Genomics. Endocr Pathol 32:102–133

    Article  CAS  PubMed  Google Scholar 

  5. Mete O, Erickson LA, Juhlin CC, de Krijger RR, Sasano H, Volante M, Papotti MG (2022) Overview of the 2022 WHO Classification of Adrenal Cortical Tumors. Endocr Pathol 33:155–196. https://doi.org/10.1007/s12022-022-09710-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lacroix A (2009) ACTH-independent macronodular adrenal hyperplasia. Best Pract Res Clin Endocrinol Metab 23:245–259. https://doi.org/10.1016/j.beem.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  7. Bouys L, Chiodini I, Arlt W, Reincke M, Bertherat J (2021) Update on primary bilateral macronodular adrenal hyperplasia (PBMAH). Endocrine 71:595–603. https://doi.org/10.1007/s12020-021-02645-w

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Q, Xiao H, Zhao L, et al (2020) Analysis of clinical and pathological features of primary bilateral macronodular adrenocortical hyperplasia compared with unilateral cortisol-secreting adrenal adenoma. Ann Transl Med 8:1173–1173. https://doi.org/10.21037/atm-20-5963

  9. Lefebvre H, Duparc C, Prévost G, Bertherat J, Louiset E (2015) Cell-To-Cell Communication in Bilateral Macronodular Adrenal Hyperplasia Causing Hypercortisolism. Front Endocrinol. https://doi.org/10.3389/fendo.2015.00034

    Article  Google Scholar 

  10. Lacroix A, Bourdeau I, Lampron A, Mazzuco TL, Tremblay J, Hamet P (2009) Aberrant G-protein coupled receptor expression in relation to adrenocortical overfunction. Clinical Endocrinology. https://doi.org/10.1111/j.1365-2265.2009.03689.x

    Article  PubMed  Google Scholar 

  11. Stratakis CA (2009) New genes and/or molecular pathways associated with adrenal hyperplasias and related adrenocortical tumors. Mol Cell Endocrinol 300:152–157 https://doi.org/https://doi.org/10.1016/j.mce.2008.11.010

    Article  CAS  PubMed  Google Scholar 

  12. Hsiao H-P, Kirschner LS, Bourdeau I, et al. (2009) Clinical and Genetic Heterogeneity, Overlap with Other Tumor Syndromes, and Atypical Glucocorticoid Hormone Secretion in Adrenocorticotropin-Independent Macronodular Adrenal Hyperplasia Compared with Other Adrenocortical Tumors. J Clin Endocrinol Metab 94:2930–2937. https://doi.org/10.1210/jc.2009-0516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hidai H, Fujii H, Otsuka K, Abe K, Shimizu N (1975) Cushing’s Syndrome due to Huge Adrenocortical Multinodular Hyperplasia. Endocrinol Jpn 22:555–560. https://doi.org/10.1507/endocrj1954.22.555

    Article  CAS  PubMed  Google Scholar 

  14. Hashimoto K, Kawada Y, Murakami K, et al (1986) Cortisol responsiveness to insulin-induced hypoglycemia in Cushing’s syndrome with huge nodular adrenocortical hyperplasia. Endocrinol Jpn 33:479–487. https://doi.org/10.1507/endocrj1954.33.47915.

  15. Makino S, Hashimoto K, Sugiyama M, Hirasawa R, Takao T, Ota Z, Saegusa M, Ohashi T, Omori H (1989) Cushing’s Syndrome Due to Huge Nodular Adrenocortical Hyperplasia with Fluctuation of Urinary 17-OHCS Excretion. Endocrinol Jpn 36:655–663. https://doi.org/10.1507/endocrj1954.36.655

  16. Cugini P, Battisti P, Palma LD, Sepe M, Kawasaki T, Uezono K, Sasaki H (1989) “GIANT” Macronodular Adrenal Hyperplasia Causing Cushing’s Syndrome: Case Report and Review of the Literature on a Clinical Distinction of Adrenocortical Nodular Pathology Associated with Hypercortisolism. Endocrinol Jpn 36:101–116. https://doi.org/10.1507/endocrj1954.36.101

    Article  CAS  PubMed  Google Scholar 

  17. Malchoff CD, Rosa J, Debold CR, et al. (1989) Adrenocorticotropin-Independent Bilateral Macronodular Adrenal Hyperplasia: An Unusual Cause of Cushing’s Syndrome. J Clin Endocrinol Metab 68:855–860. https://doi.org/10.1210/jcem-68-4-855

    Article  CAS  PubMed  Google Scholar 

  18. Aiba M, Hirayama A, Iri H, et al (1991) Adrenocorticotropic Hormone—Independent Bilateral Adrenocortical Macronodular Hyperplasia as a Distinct Subtype of Cushing’s Syndrome Enzyme Histochemical and Ultrastructural Study of Four Cases with a Review of the Literature. Am J Clin Pathol 96:334–340. https://doi.org/10.1093/ajcp/96.3.334

    Article  CAS  PubMed  Google Scholar 

  19. Lacroix A, Bolté E, Tremblay J, et al (1992) Gastric Inhibitory Polypeptide–Dependent Cortisol Hypersecretion — A New Cause of Cushing’s Syndrome. N Engl J Med 327:974–980. https://doi.org/10.1056/NEJM199210013271402

    Article  CAS  PubMed  Google Scholar 

  20. Koizumi S, Beniko M, Ikota A, et al (1994) Adrenocorticotropic Hormone-Independent Bilateral Adrenocortical Macronodular Hyperplasia: A Case Report and Immunohistochemical Studies. Endocr J 41:429–435. https://doi.org/10.1507/endocrj.41.42921

  21. Murakami O, Satoh F, Takahashi K, et al (1995) Three Cases of Clinical or Preclinical Cushing’s Syndrome due to Adrenocorticotropic Hormone-Independent Bilateral Adrenocortical Macronodular Hyperplasia: Pituitary-Adrenocortical Function and Immunohistochemistry. Intern Med 34:1074–1081. https://doi.org/10.2169/internalmedicine.34.1074

    Article  CAS  PubMed  Google Scholar 

  22. Nemoto Y, Aoki A, Katayama Y, et al (1995) Non-Cushingoid Cushing’s Syndrome due to Adrenocorticotropic Hormone-Independent Bilateral Adrenocortical Macronodular Hyperplasia. Intern Med 34:446–450. https://doi.org/10.2169/internalmedicine.34.446

    Article  CAS  PubMed  Google Scholar 

  23. Wada N, Kubo M, Kijima H, Ishizuka T, Saeki T, Koike T, Sasano H (1996) Adrenocorticotropin-independent bilateral macronodular adrenocortical hyperplasia: immunohistochemical studies of steroidogenic enzymes and post-operative course in two men. Eur J Endocrinol 134:583–587. https://doi.org/10.1530/eje.0.1340583

    Article  CAS  PubMed  Google Scholar 

  24. Terzolo M, Boccuzzi A, Alí A, Bollito E, De Risi C, Paccotti P, Angeli A (1997) Cushing’s syndrome due to ACTH-independent bilateral adrenocortical macronodular hyperplasia. J Endocrinol Invest 20:270–275. https://doi.org/10.1007/BF03350299

    Article  CAS  PubMed  Google Scholar 

  25. Tamura H, Sugihara H, Minami S, et al (1997) Cushing’s Syndrome due to Bilateral Adrenocortical Adenomas with Different Pathological Features. Intern Med 36:804–809. https://doi.org/10.2169/internalmedicine.36.804

    Article  CAS  PubMed  Google Scholar 

  26. Hayashi Y, Takeda Y, Kaneko K, Koyama H, Aiba M, Ikeda U, Shimada K (1998) A Case of Cushing’s Syndrome due to ACTH-Independent Bilateral Macronodular Hyperplasia Associated with Excessive Secretion of Mineralocorticoids. Endocr J 45:485–491. https://doi.org/10.1507/endocrj.45.485

    Article  CAS  PubMed  Google Scholar 

  27. Swain JM, Grant CS, Schlinkert RT, Thompson GB, van Heerden JA, Lloyd RV, Young WF (1998) Corticotropin-Independent Macronodular Adrenal Hyperplasia: A Clinicopathologic Correlation. Arch Surg. https://doi.org/10.1001/archsurg.133.5.541

    Article  PubMed  Google Scholar 

  28. Hsieh M-H, Chang C-C, Lin M-C, Chang T-C (2006) Adrenocorticotropin-Independent Bilateral Adrenal Macronodular Hyperplasia (AIMAH) A Case Report. J Intern Med Taiwan. 17:291-297

    Google Scholar 

  29. Kubo N, Onoda N, Ishikawa T, et al (2006) Simultaneous Bilateral Laparoscopic Adrenalectomy for Adrenocorticotropic Hormone-Independent Macronodular Adrenal Hyerplasia: Report of a Case. Surg Today 36:642–646. https://doi.org/10.1007/s00595-006-3209-6

    Article  PubMed  Google Scholar 

  30. Sato M, Soma M, Nakayama T, et al (2006) A Case of Adrenocorticotropin-independent Bilateral Adrenal Macronodular Hyperplasia (AIMAH) with Primary Hyperparathyroidism (PHPT). Endocr J 53:111–117. https://doi.org/10.1507/endocrj.53.111

    Article  PubMed  Google Scholar 

  31. Hayakawa E, Yoshimoto T, Hiraishi K, Kato M, Izumiyama H, Sasano H, Hirata Y (2011) A Rare Case of ACTH-independent Macronodular Adrenal Hyperplasia Associated with Aldosterone-producing Adenoma. Intern Med 50:227–232. https://doi.org/10.2169/internalmedicine.50.4351

    Article  PubMed  Google Scholar 

  32. Kobayashi T, Miwa T, Kan K, et al (2012) Usefulness and Limitations of Unilateral Adrenalectomy for ACTH-independent Macronodular Adrenal Hyperplasia in a Patient with Poor Glycemic Control. Intern Med 51:1709–1713. https://doi.org/10.2169/internalmedicine.51.7041

    Article  CAS  PubMed  Google Scholar 

  33. Rhee H, Jeon YK, Kim SS, Kang YH, Son SM, Kim YK, Kim IJ (2014) Adrenocorticotropic hormone-independent macronodular adrenal hyperplasia with abnormal cortisol secretion mediated by catecholamines. Korean J Intern Med 29:667. https://doi.org/10.3904/kjim.2014.29.5.667

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tokumoto M, Onoda N, Tauchi Y, et al (2017) A case of Adrenocoricotrophic hormone -independent bilateral adrenocortical macronodular hyperplasia concomitant with primary aldosteronism. BMC Surg 17:97. https://doi.org/10.1186/s12893-017-0293-z

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jin P, Janjua MU, Zhang Q, Dong C, Yang Y, Mo Z (2018) Extensive ARMC5 genetic variance in primary bilateral macronodular adrenal hyperplasia that started with exophthalmos: a case report. J Med Case Reports 12:13. https://doi.org/10.1186/s13256-017-1529-3

    Article  Google Scholar 

  36. Higashitani T, Karashima S, Aono D, et al (2020) A case of renovascular hypertension with incidental primary bilateral macronodular adrenocortical hyperplasia. Endocrinol Diabetes Metab Case Rep. 6:19-0163. https://doi.org/10.1530/EDM-19-0163

    Article  Google Scholar 

  37. He W-T, Wang X, Song W, et al (2021) A novel nonsense mutation in ARMC5 causes primary bilateral macronodular adrenocortical hyperplasia. BMC Med Genomics 14:126. https://doi.org/10.1186/s12920-021-00896-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matyakhina L, Freedman RJ, Bourdeau I, et al (2005) Hereditary Leiomyomatosis Associated with Bilateral, Massive, Macronodular Adrenocortical Disease and Atypical Cushing Syndrome: A Clinical and Molecular Genetic Investigation. J Clin Endocrinol Metab 90:3773–3779. https://doi.org/10.1210/jc.2004-2377

    Article  CAS  PubMed  Google Scholar 

  39. Sasano H, Suzuki T, Nagura H (1994) ACTH-independent macronodular adrenocortical hyperplasia: immunohistochemical and in situ hybridization studies of steroidogenic enzymes. Mod Pathol 7:215–219

    CAS  PubMed  Google Scholar 

  40. Ishihara T, Uchihira F, Tatsumi M, Mori T, Igarashi T, Takayama H, Ishikawa T (1977) A Case with Cushing Syndrome Due to Huge Bilateral Adrenal Nodular Hyperplasia. Folia Endocrinol 53:1082–1093. https://doi.org/10.1507/endocrine1927.53.9_1082

    Article  CAS  Google Scholar 

  41. Krivitzky A, Blondeau P, Camilleri JP, Delzant G, Roche-Sicot J (1980) [Cushing’s syndrome caused by a bilateral adrenal adenoma (author’s transl)]. Ann Med Interne (Paris) 131:361–364

    CAS  PubMed  Google Scholar 

  42. Kawamura M, Shiraha S, Sudo T, et al (1983) A Case Of A Total Bilateral Adrenalectomy For Cushing’s Syndrome Due To Bilateral Nodular Adrenocortical Hyperplasia. The journal of the Japanese Practical Surgeon Society 44:183–190. https://doi.org/10.3919/ringe1963.44.183

    Article  Google Scholar 

  43. Zeiger MA, Nieman LK, Cutler GB, Chrousos GP, Doppman JL, Travis WD, Norton JA (1991) Primary bilateral adrenocortical causes of Cushing’s syndrome. Surgery 110:1106–1115

    CAS  PubMed  Google Scholar 

  44. Lieberman SA, Eccleshall TR, Feldman D (1994) ACTH-independent massive bilateral adrenal disease (AIMBAD): A subtype of Cushing’s syndrome with major diagnostic and therapeutic implications. European Journal of Endocrinology 131:67–73. https://doi.org/10.1530/eje.0.1310067

    Article  CAS  PubMed  Google Scholar 

  45. Yamada Y, Sakaguchi K, Inoue T, et al (1997) Preclinical Cushing’s Syndrome due to Adrenocorticotropin-Independent Bilateral Adrenocortical Macronodular Hyperplasia with Concurrent Excess of Gluco- and Mineralocorticoids. Intern Med 36:628–632. https://doi.org/10.2169/internalmedicine.36.628

    Article  CAS  PubMed  Google Scholar 

  46. Chevalier B, Vantyghem M-C, Espiard S (2021) Bilateral Adrenal Hyperplasia: Pathogenesis and Treatment. Biomedicines 9:1397. https://doi.org/10.3390/biomedicines9101397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Skogseid B, Larsson C, Lindgren PG, Kvanta E, Rastad J, Theodorsson E, Wide L, Wilander E, Oberg K (1992) Clinical and genetic features of adrenocortical lesions in multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 75:76–81. https://doi.org/10.1210/jcem.75.1.1352309

    Article  CAS  PubMed  Google Scholar 

  48. Langer P, Cupisti K, Bartsch DK, Nies C, Goretzki PE, Rothmund M, Röher HD (2002) Adrenal Involvement in Multiple Endocrine Neoplasia Type 1. Wor World J Surg 26:891–89610.

  49. Marchesa P, Fazio VW, Church JM, McGannon E (1997) Adrenal masses in patients with familial adenomatous polyposis. Dis Colon Rectum 40:1023–1028. https://doi.org/10.1007/BF0205092348

    Article  CAS  PubMed  Google Scholar 

  50. Vaczlavik A, Bouys L, Violon F, et al (2022) KDM1A inactivation causes hereditary food-dependent Cushing syndrome. Genetics in Medicine 24:374–383. https://doi.org/10.1016/j.gim.2021.09.018

    Article  CAS  PubMed  Google Scholar 

  51. Assié G, Rizk-Rabin M, Barreau O, Guignat L, René-Corail F, Poussier A, Borson-Chazot F, Bertagna X, Ragazzon B (2013) ARMC5 Mutations in Macronodular Adrenal Hyperplasia with Cushing’s Syndrome. N Engl J Med 28;369(22):2105. https://doi.org/10.1056/NEJMoa1304603

  52. Espiard S, Drougat L, Libé R, et al (2015) ARMC5 Mutations in a Large Cohort of Primary Macronodular Adrenal Hyperplasia: Clinical and Functional Consequences. J Clin Endocrinol Metab 100:E926–E935. https://doi.org/10.1210/jc.2014-4204

  53. Bonnet-Serrano F, Bertherat J (2018) Genetics of tumors of the adrenal cortex. Endocrine-Related Cancer 25:R131–R152. https://doi.org/10.1530/ERC-17-0361

    Article  CAS  PubMed  Google Scholar 

  54. Drougat L, Espiard S, Bertherat J (2015) Genetics of primary bilateral macronodular adrenal hyperplasia: a model for early diagnosis of Cushing’s syndrome? European Journal of Endocrinology 173:M121–M131. https://doi.org/10.1530/EJE-15-0532

    Article  CAS  PubMed  Google Scholar 

  55. Chasseloup F, Bourdeau I, Tabarin A, et al (2021) Loss of KDM1A in GIP-dependent primary bilateral macronodular adrenal hyperplasia with Cushing’s syndrome: a multicentre, retrospective, cohort study. Lancet Diabetes Endocrinol 9:813–824. https://doi.org/10.1016/S2213-8587(21)00236-9

    Article  CAS  PubMed  Google Scholar 

  56. Volante M, Bollito E, Sperone P, et al (2009) Clinicopathological study of a series of 92 adrenocortical carcinomas: from a proposal of simplified diagnostic algorithm to prognostic stratification. Histopathology 55:535–543. https://doi.org/10.1111/j.1365-2559.2009.03423.x

    Article  PubMed  Google Scholar 

  57. Duregon E, Fassina A, Volante M, et al (2013) The Reticulin Algorithm for Adrenocortical Tumor Diagnosis: A Multicentric Validation Study on 245 Unpublished Cases. American Journal of Surgical Pathology 37:1433–1440. https://doi.org/10.1097/PAS.0b013e31828d387b

    Article  PubMed  Google Scholar 

  58. Huang Y, de Boer WB, Adams LA, MacQuillan G, Rossi E, Rigby P, Raftopoulos SC, Bulsara M, Jeffrey GP (2013) Image analysis of liver collagen using sirius red is more accurate and correlates better with serum fibrosis markers than trichrome. Liver Int 33:1249–1256. https://doi.org/10.1111/liv.12184

  59. Kubota-Nakayama F, Nakamura Y, Konosu-Fukaya S, et al (2016) Expression of steroidogenic enzymes and their transcription factors in cortisol-producing adrenocortical adenomas: immunohistochemical analysis and quantitative real-time polymerase chain reaction studies. Hum Pathol 54:165–173. https://doi.org/10.1016/j.humpath.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  60. Mete O, Asa SL, Giordano TJ, Papotti M, Sasano H, Volante M (2018) Immunohistochemical Biomarkers of Adrenal Cortical Neoplasms. Endocr Pathol 29:137–149. https://doi.org/10.1007/s12022-018-9525-8

  61. Boulkroun S, Samson-Couterie B, Dzib J-FG, et al (2010) Adrenal Cortex Remodeling and Functional Zona Glomerulosa Hyperplasia in Primary Aldosteronism. Hypertension 56:885–892. https://doi.org/10.1161/HYPERTENSIONAHA.110.158543

    Article  CAS  PubMed  Google Scholar 

  62. Gomez-Sanchez CE, Gomez-Sanchez EP, Nishimoto K (2020) Immunohistochemistry of the Human Adrenal CYP11B2 in Normal Individuals and in Patients with Primary Aldosteronism. Horm Metab Res 52:421–426. https://doi.org/10.1055/a-1139-2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Arola J, Liu J, Heikkilä P, Voutilainen R, Kahri A (1998) Expression of inhibin α in the human adrenal gland and adrenocortical tumors. Endocrine Research 24:865–867. https://doi.org/10.3109/07435809809032699

    Article  CAS  PubMed  Google Scholar 

  64. Christopoulos S, Bourdeau I, Lacroix A (2005) Clinical and Subclinical ACTH-Independent Macronodular Adrenal Hyperplasia and Aberrant Hormone Receptors. Horm Res Paediatr 64:119–131. https://doi.org/10.1159/000088818

    Article  CAS  Google Scholar 

  65. Bouys L, Vaczlavik A, Jouinot A, et al (2022) Identification of predictive criteria for pathogenic variants of primary bilateral macronodular adrenal hyperplasia (PBMAH) gene ARMC5 in 352 unselected patients. Eur J Endocrinol 187:123–134. https://doi.org/10.1530/EJE-21-1032

    Article  CAS  PubMed  Google Scholar 

  66. Nishimoto K, Nakagawa K, Li D, et al (2010) Adrenocortical Zonation in Humans under Normal and Pathological Conditions. J Clin Endocrinol Metab 95:2296–2305. https://doi.org/10.1210/jc.2009-2010

    Article  CAS  PubMed  Google Scholar 

  67. Rege J, Hoxie J, Liu C-J, et al (2022) Targeted Mutational Analysis of Cortisol-Producing Adenomas. J Clin Endocrinol Metab 107:e594–e603. https://doi.org/10.1210/clinem/dgab682

    Article  PubMed  Google Scholar 

  68. Assie G, Louiset E, Sturm N, et al (2010) Systematic Analysis of G Protein-Coupled Receptor Gene Expression in Adrenocorticotropin-Independent Macronodular Adrenocortical Hyperplasia Identifies Novel Targets for Pharmacological Control of Adrenal Cushing’s Syndrome. J Clin Endocrinol Metab 95:E253–E262. https://doi.org/10.1210/jc.2009-2281

    Article  CAS  PubMed  Google Scholar 

  69. Menon KMJ, Menon B (2014) Regulation of luteinizing hormone receptor expression by an RNA binding protein: role of ERK signaling. Indian J Med Res 140 Suppl:S112-119.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the members of the department of pathology, Cochin Hospital, Paris, France, for their precious technical support.

Funding

This work was supported by the Fondation pour la Recherche Médicale (EQU201903007854) and by the Agence Nationale de la Recherche (18-CE14-0008–01). FV and LB received a fellowship from ARC (association de recherche contre le cancer) foundation and from the CARPEM (Cancer research for personalized medicine). FV received a fellowship from FIRENDO (Filière maladies rares endocriniennes).

Author information

Authors and Affiliations

Authors

Contributions

F.V. and M.S. wrote the main manuscript text. F.V. L.B. M.B. and M.S. collected the data. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Jérôme Bertherat or Mathilde Sibony.

Ethics declarations

Ethical Approval

All patients gave their written consent for research purposes including genetic analysis in the national COMETE network. This project was approved as a monocentric retrospective study by the data protection office (bureau de la protection des données, registre d’enregistrement AP-HP) (number 20220221155734) and the CLEP, (comité local d’éthique des publications de l’hôpital Cochin) (number AAA-2022–08019). It complies with the principles of the declaration of Helsinki.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Violon, F., Bouys, L., Berthon, A. et al. Impact of Morphology in the Genotype and Phenotype Correlation of Bilateral Macronodular Adrenocortical Disease (BMAD): A Series of Clinicopathologically Well-Characterized 35 Cases. Endocr Pathol 34, 179–199 (2023). https://doi.org/10.1007/s12022-023-09751-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-023-09751-7

Keywords

Navigation