Skip to main content
Log in

Comprehensive Multidimensional Characterization of Polyelectrolytes and Interpolyelectrolyte Complexes in Aqueous Solutions

  • REVIEW ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

In this paper we give the overview of our latest results on the complexation between polyelectrolytes and oppositely charged low-molar mass species, proteins, homopolymers and block copolymers. First, we review the results on the study of the interaction of polythiophene-based polycations with phosphonium and ammonium pendants and their complexation with negatively charged multivalent species followed by fluorescence quenching. We proved that multivalent solutes bind to polyelectrolyte stronger than to previously studied polythiophene, thus, allowing for their application as luminescence sensors. Secondly, we investigated the co-assembly of polyanion with double hydrophilic block copolymer composed of polycationic block and neutral hydrophilic block and followed the complex formation by quenching of fluorescence of the indicator attached to the end of polyanion chain. We discovered that the formed interpolyelectrolyte (IPEC) core of core/shell micelles remains dynamical even after equilibrium was reached thus making such systems suitable materials for targeted delivery of multivalent species. In addition, the formation of micelles with fluid cores was observed as a result of self-assembly of di- and triblock polyelectrolytes containing a hydrophobic block with low glass transition temperature and a positively charged block. We proved their ability to encapsulate and release hydrophobic species from the soft core upon dilution. Moreover, we confirmed their ability to complex with multivalent negatively charged species. The morphology of the formed complex strongly depends on ionic strength: the aggregates formed by micelles bonded at the periphery disrupt with increasing salt concentration and a part of multivalent ions releases into solution. Finally, the multilayered nanoparticles with both soft hydrophobic and IPEC layers were designed by co-assembly between core/shell micelles with a soft core and a positively charged shell, and block polyelectrolyte composed of polyanion and neutral hydrophilic blocks. We showed that the morphology of the particles and the charge of IPEC layer of such multicompartment nanostructures can be controlled by the ratio of oppositely charged monomeric units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. Mura, S., Nicolas, J., and Couvreur P., Nat. Mater., 2013, vol. 12, p. 991. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  2. Bolognesi, A., Botta, C., and Yunus, S., Thin Solid Films, 2005, vol. 492, p. 307. https://doi.org/10.1016/j.tsf.2005.06.095

    Article  CAS  Google Scholar 

  3. Park, M., Harrison, C., Chaikin, P.M., Register, R.A., and Adamson, D.H., Science, 1997, vol. 276, p. 1401. https://doi.org/10.1126/science.276.5317.1401

    Article  CAS  Google Scholar 

  4. Kataoka, K., Harada, A., and Nagasaki, Y., Adv. Drug Delivery Rev., 2012, vol. 64, p. 37. https://doi.org/10.1016/j.addr.2012.09.013

    Article  Google Scholar 

  5. Ganta, S., Devalapally, H., Shahiwala, A., and Amiji, M., J. Controlled Release, 2008, vol. 126, p. 187. https://doi.org/10.1016/j.jconrel.2007.12.017

    Article  CAS  Google Scholar 

  6. Hrubý, M., Filippov, S.K., and Štěpánek, P., Eur. Polym. J., 2015, vol. 65, p. 82. https://doi.org/10.1016/j.eurpolymj.2015.01.016

    Article  CAS  Google Scholar 

  7. Bogomolova, A., Filippov, S.K., Starovoytova, L., Angelov, B., Konarev, P., Sedlacek, O., Hruby, M., and Stepanek, P., J. Phys. Chem. B, 2014, vol. 118, p. 4940. https://doi.org/10.1021/jp5011296

    Article  CAS  PubMed  Google Scholar 

  8. Petrova, S., Klepac, D., Konefał, R., Kereïche, S., Kováčik, L., and Filippov, S.K., Macromolecules, 2016, vol. 49, p. 5407. https://doi.org/10.1021/acs.macromol.6b01187

    Article  CAS  Google Scholar 

  9. Kaldybekov, D.B., Filippov, S.K., Radulescu, A., and Khutoryanskiy, V.V., Eur. J. Pharm. Biopharm., 2019, vol. 143, p. 24. https://doi.org/10.1016/j.ejpb.2019.08.007

    Article  CAS  PubMed  Google Scholar 

  10. Kaberov, L.I., Verbraeken, B., Riabtseva, A., Brus, J., Radulescu, A., Talmon, Y., Stepanek, P., Hoogenboom, R., and Filippov, S.K., Macromolecules, 2018, vol. 51, p. 6047. https://doi.org/10.1021/acs.macromol.8b00957

    Article  CAS  Google Scholar 

  11. Riabtseva, A., Kaberov, L.I., Noirez, L., Ryukhtin, V., Nardin, C., Verbraeken, B., Hoogenboom, R., Stepanek, P., and Filippov, S.K., Eur. Polym. J., 2018, vol. 99, p. 518. https://doi.org/10.1016/j.eurpolymj.2018.01.007

    Article  CAS  Google Scholar 

  12. Koziolová, E., Machová, D., Pola, R., Janoušková, O., Chytil, P., Laga, R., Filippov, S.K., Šubr, V., Etrych, T., and Pechar, M., J. Mater. Chem. B, 2016, vol. 4, p. 7620. https://doi.org/10.1039/c6tb02225a

    Article  PubMed  Google Scholar 

  13. Kedracki, D., Filippov, S.K., Gour, N., Schlaad, H., and Nardin, C., Macromol. Rapid Commun., 2015, vol. 36, p. 768. https://doi.org/10.1002/marc.201400728

    Article  CAS  PubMed  Google Scholar 

  14. Coote, J.P., Kinsey, T., Street, D.P., Kilbey, S.M., Sangoro, J.R., and Stein, G.E., ACS Macro Lett., 2020, vol. 9, p. 565. https://doi.org/10.1021/acsmacrolett.0c00039

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, S. and Chokshi, P., Soft Matter, 2020, vol. 16, p. 3522. https://doi.org/10.1039/d0sm00124d

    Article  CAS  PubMed  Google Scholar 

  16. Egli, S., Schlaad, H., Bruns, N., and Meier, W., Polymers, 2011, vol. 3, p. 252. https://doi.org/10.3390/polym3010252

    Article  CAS  Google Scholar 

  17. Kita-Tokarczyk, K., Grumelard, J., Haefele, T., and Meier, W., Polymer, 2005, vol. 46, p. 3540. https://doi.org/10.1016/j.polymer.2005.02.083

    Article  CAS  Google Scholar 

  18. Blanazs, A., Armes, S.P., and Ryan, A.J., Macromol. Rapid Commun., 2009, vol. 30, p. 267.

    Article  CAS  PubMed  Google Scholar 

  19. Filippov, S.K., Chytil, P., Konarev, P. V., Dyakonova, M., Papadakis, C.M., Zhigunov, A., Plestil, J., Stepanek, P., Etrych, T., Ulbrich, K., and Svergun, D.I., BioMacromolecules, 2012, vol. 13, p. 2594. https://doi.org/10.1021/bm3008555

    Article  CAS  PubMed  Google Scholar 

  20. Filippov, S.K., Vishnevetskaya, N.S., Niebuur. B.J., Koziolová. E., Lomkova. E.A., Chytil. P., Etrych. T., and Papadakis. C.M., Colloid Polym. Sci., 2017, vol. 295, p. 1313. https://doi.org/10.1007/s00396-017-4027-7

    Article  CAS  Google Scholar 

  21. Chytil, P., Kostka, L., and Etrych, T., J. Pers. Med., 2021, vol. 11, p. 115. https://doi.org/10.3390/jpm11020115

    Article  PubMed  PubMed Central  Google Scholar 

  22. Filippov, S.K., Bogomolova, A., Kaberov, L., Velychkivska, N., Starovoytova, L., Cernochova, Z., Rogers, S.E., Lau, W.M., Khutoryanskiy, V.V., and Cook, M.T., Langmuir, 2016, vol. 32, p. 5314. https://doi.org/10.1021/acs.langmuir.6b00284

    Article  CAS  PubMed  Google Scholar 

  23. Cook, M.T., Filippov, S.K., and Khutoryanskiy, V.V., Colloid Polym. Sci., 2017, vol. 295, p. 1351. https://doi.org/10.1007/s00396-017-4084-y

    Article  CAS  Google Scholar 

  24. Filippov, S.K., Franklin, J.M., Konarev, P.V., Chytil, P., Etrych, T., Bogomolova, A., Dyakonova, M., Papadakis, C.M., Radulescu, A., Ulbrich, K., Stepanek, P., and Svergun, D.I., BioMacromolecules, 2013, vol. 14, p. 4061. https://doi.org/10.1021/bm401186z

    Article  CAS  PubMed  Google Scholar 

  25. Riabtseva, A., Kaberov, L.I., Kučka, J., Bogomolova, A., Stepanek, P., Filippov, S.K., and Hruby, M., Langmuir, 2017, vol. 33, p. 764. https://doi.org/10.1021/acs.langmuir.6b03778

    Article  CAS  PubMed  Google Scholar 

  26. Bogomolova, A., Kaberov, L., Sedlacek, O., Filippov, S.K., Stepanek, P., Kral, V., Wang, X.Y., Liu, S.L., Ye, X.D., and Hruby, M., Eur. Polym. J., 2016, vol. 84, p. 54. https://doi.org/10.1016/j.eurpolymj.2016.09.010

    Article  CAS  Google Scholar 

  27. Sedlacek, O., Filippov, S.K., Svec, P., and Hruby, M., Macromol. Chem. Phys., 2019, vol. 220, p. 1900238. https://doi.org/10.1002/macp.201900238

  28. Pechar, M., Pola, R., Laga, R., Braunová, A., Filippov, S.K., Bogomolova, A., Bednárová, L., Vaněk, O., and Ulbrich, K., BioMacromolecules, 2014, vol. 15, p. 2590. https://doi.org/10.1021/bm500436p

    Article  CAS  PubMed  Google Scholar 

  29. Sedlacek, O., Bardoula, V., Vuorimaa-Laukkanen, E., Gedda, L., Edwards, K., Radulescu, A., Mun, G.A., Guo, Y., Zhou, J., Zhang, H., Nardello-Rataj, V., Filippov, S.K., and Hoogenboom, R., Small, 2022, vol. 18, p. 2106251. https://doi.org/10.1002/smll.202106251

  30. Murmiliuk, A., Košovan, P., Janata, M., Procházka, K., Uhlík, F., and Štěpánek, M., ACS Macro Lett., 2018, vol. 7, p. 1243. https://doi.org/10.1021/acsmacrolett.8b00484

    Article  CAS  PubMed  Google Scholar 

  31. Murmiliuk, A., Matějíček, P., Filippov, S.K., Janata, M., Šlouf, M., Pispas, S., and Štěpánek, M., Soft Matter, 2018, vol. 14, p. 7578. https://doi.org/10.1039/c8sm01174e

    Article  CAS  PubMed  Google Scholar 

  32. Hladysh, S., Murmiliuk, A., Vohlídal, J., Havlíček, D., Sedlařík, V., Štěpánek, M., and Zedník, J., Eur. Polym. J., 2018, vol. 100, p. 200. https://doi.org/10.1016/j.eurpolymj.2018.01.029

    Article  CAS  Google Scholar 

  33. Murmiliuk, A., Filippov, S.K., Rud, O., Košovan, P., Tošner, Z., Radulescu, A., Skandalis, A., Pispas, S., Šlouf, M., and Štěpánek, M., J. Colloid Interface Sci., 2021, vol. 599, p. 313. https://doi.org/10.1016/j.jcis.2021.04.050

    Article  CAS  PubMed  Google Scholar 

  34. Riess, G., Prog. Polym. Sci., 2003, vol. 28, p. 1107. https://doi.org/10.1016/S0079-6700(03)00015-7

    Article  CAS  Google Scholar 

  35. Khandpur, A.K., Förster, S., Bates, F.S., Hamley, I.W., Ryan, A.J., Bras, W., Almdal, K., and Mortensen, K., Macromolecules, 1995, vol. 28, p. 8796. https://doi.org/10.1021/ma00130a012

    Article  CAS  Google Scholar 

  36. Hoffman, A.S., Stayton, P.S., Bulmus, V., Chen, G., Chen, J., Cheung, C., Chilkoti, A., Ding, Z., Dong, L., Fong, R., Lackey, C.A., Long, C.J., Miura, M., Morris, J.E., Murthy, N., Nabeshima, Y., Park, T.G., Press, O.W., Shimoboji, T., Shoemaker, S., Yang, H.J.,. Monji, N, Nowinski, R.C., Cole, C.A., Priest, J.H., Harris, J.M., Nakamae, K., Nishino, T., and Miyata, T., J. Biomed. Mater. Res., 2000, vol. 52, p. 577. https://doi.org/10.1002/1097-4636(20001215)52:4<577::AID-JBM1>3.0.CO;2-5

  37. Galaev, I.Y. and Mattiasson, B., Trends Biotechnol., 1999, vol. 7799, p. 335. https://doi.org/10.1017/CBO9780511635373.009

    Article  Google Scholar 

  38. Cabane, E., Zhang, X., Langowska, K., Palivan, C.G., and Meier, W., Biointerphases, 2012, vol. 7, p. 9. https://doi.org/10.1007/s13758-011-0009-3

    Article  CAS  PubMed  Google Scholar 

  39. Aseyev, V.O., Tenhu, H., and Winnik, F.M., Adv. Colloid Interface Sci., 2011, vol. 242, p. 29. https://doi.org/10.1007/12_2010_57

    Article  CAS  Google Scholar 

  40. Park, I.-K., Singha, K., Arote, R.B., Choi, Y.-J., Kim, W.J., and Cho, C.-S., Macromol. Rapid Commun., 2010, vol. 31, p. 1122.

    Article  CAS  PubMed  Google Scholar 

  41. Atanase, L.I., Desbrieres, J., and Riess, G., Prog. Polym. Sci., 2017, vol. 73, p. 32. https://doi.org/10.1016/j.progpolymsci.2017.06.001

    Article  CAS  Google Scholar 

  42. Raya, R.K., Štěpánek, M., Limpouchová, Z., Procházka, K., Svoboda, M., Lísal, M., Pavlova, E., Skandalis, A., and Pispas, S., Macromolecules, 2020, vol. 53, p. 678095. https://doi.org/10.1021/acs.macromol.0c00560

  43. Brosnan, S.M., Schlaad, H., and Antonietti, M., Angew. Chem., Int. Ed., 2015, vol. 54, p. 9715.

    Article  CAS  Google Scholar 

  44. Rudolph, T., Crotty, S., Lühe, M. von der, Pretzel, D., Schubert, U.S., and Schacher, F.H., Polymers, 2013, vol. 5, p. 1081. https://doi.org/10.3390/polym5031081

    Article  CAS  Google Scholar 

  45. Schmidt, B.V.K.J., Chem. Phys., 2018, vol. 219, p. 1700494.

  46. Rodríguez-Hernández, J., Chécot, F., Gnanou, Y., and Lecommandoux, S., Prog. Polym. Sci., 2005, vol. 30, p. 691. https://doi.org/10.1016/j.progpolymsci.2005.04.002

    Article  CAS  Google Scholar 

  47. Cai, S., Vijayan, K., Cheng, D., Lima, E.M., and Discher, D.E., Pharm. Res., 2007, vol. 24, p. 2099. https://doi.org/10.1007/s11095-007-9335-z

    Article  CAS  PubMed  Google Scholar 

  48. Skandalis, A. and Pispas, S., Polym. Chem., 2017, vol. 8, p. 4538. https://doi.org/10.1039/c7py00905d

    Article  CAS  Google Scholar 

  49. Colombani, O., Ruppel, M., Burkhardt, M., Drechsler, M., Schumacher, M., Gradzielski, M., Schweins, R., and Müller, A.H.E., Macromolecules, 2007, vol. 40, p. 4351. https://doi.org/10.1021/ma0609580

    Article  CAS  Google Scholar 

  50. Skandalis, A. and Pispas, S., J. Polym. Sci., Part A: Polym. Chem., 2017, vol. 55, p. 155.

    Article  CAS  Google Scholar 

  51. Li, Y., Gao, G.H., and Lee, D.S., Adv. Healthcare Mater., 2013, vol. 2, p. 388.

    Article  CAS  Google Scholar 

  52. Mano, J.F., Adv. Eng. Mater., vol. 10, 2008, p. 515.

    Article  CAS  Google Scholar 

  53. Onaca, O., Enea, R., Hughes, D.W., and Meier, W., Macromol. Biosci. 2009, vol. 9, p. 129.

    Article  Google Scholar 

  54. Schmaljohann, D., Adv. Drug Delivery Rev., 2006, vol. 58, p. 1655. https://doi.org/10.1016/j.addr.2006.09.020

    Article  CAS  Google Scholar 

  55. Hoffman, A.S., Adv. Drug Delivery Rev., 2013, vol. 65, p. 10. https://doi.org/10.1016/j.addr.2012.11.004

    Article  CAS  Google Scholar 

  56. Felber, A.E., Dufresne, M.H., and Leroux, J.C., Adv. Drug Delivery Rev., 2012, vol. 64, p. 979. https://doi.org/10.1016/j.addr.2011.09.006

    Article  CAS  Google Scholar 

  57. Dobrynin, M. and Rubinstein A. V., Prog. Polym. Sci., 2005, vol. 30, p. 1049.

    Article  CAS  Google Scholar 

  58. Matsuda, T. and Annaka, M., Langmuir, 2008, vol. 24, p. 5707. https://doi.org/10.1021/la704054h

    Article  CAS  PubMed  Google Scholar 

  59. Košovan, P., Kuldová, J., Limpouchová, Z., Prochazka, K., Zhulina, E.B., and Borisov, O.V., Macromolecules, 2009, vol. 42, p. 6748. https://doi.org/10.1021/ma900768p

    Article  CAS  Google Scholar 

  60. Lyulin, A.V., Dunweg, B., Borisov, O.V., and Darinskii, A.A., Macromolecules, 1999, vol. 32, p. 3264.

    Article  CAS  Google Scholar 

  61. Guo, X. and Ballauff, M., Langmuir, 2000, vol. 16, p. 8719

    Article  CAS  Google Scholar 

  62. Dingenouts, N, Patel, M., Rosenfeldt, S., Pontoni, D., Narayanan, T., and Ballauff, M., Macromolecules, 2004, vol. 37, p. 8152. https://doi.org/10.1021/ma048828j

    Article  CAS  Google Scholar 

  63. Henzler, K., Haupt, B., Lauterbach, K., Wittemann, A., Borisov, O.V., and Ballauff, M., J. Am. Chem. Soc., 2010, vol. 132, p. 3159. https://doi.org/10.1021/ja909938c

    Article  CAS  PubMed  Google Scholar 

  64. Schmidt, V., Di Cola, E., Giacomelli, C., Brisson, A.R., Narayanan, T., and Borsali, R., Macromolecules, 2008, vol. 41, p. 2195. https://doi.org/10.1021/ma702182p

    Article  CAS  Google Scholar 

  65. Naji, A., Netz, R.R., and Seidel, C., Eur. Phys. J. E, 2003, vol. 12, p. 223. https://doi.org/10.1140/epje/i2002-10163-4

    Article  CAS  PubMed  Google Scholar 

  66. Filippov, S.K., Papagiannopoulos, A., Riabtseva, A., and Pispas, S., Colloid Polym. Sci., 2018, vol. 296, p. 1183. https://doi.org/10.1007/s00396-018-4329-4

    Article  CAS  Google Scholar 

  67. Miliou, K., Gergidis, L.N., and Vlahos, C., J. Polym. Sci., Part B : Polym. Phys., 2018, vol. 56, 924

    Article  CAS  Google Scholar 

  68. Förster, S., Hermsdorf, N., Böttcher, C., and Lindner, P., Macromolecules, 2002, vol. 35, p. 4096. https://doi.org/10.1021/ma011565y

    Article  CAS  Google Scholar 

  69. Berret, J.F., Adv. Colloid Interface Sci., 2011, vol. 167, p. 38. https://doi.org/10.1016/j.cis.2011.01.008

    Article  CAS  PubMed  Google Scholar 

  70. Pergushov, D.V., Müller, A.H.E., and Schacher, F.H., Chem. Soc. Rev., 2012, vol. 41, p. 6888. https://doi.org/10.1039/c2cs35135h

    Article  CAS  PubMed  Google Scholar 

  71. Solomatin, S. V., Bronich, T.K., Eisenberg, A., Kabanov, V.A., and Kabanov, A.V., Langmuir, 2004, vol. 20, p. 2066. https://doi.org/10.1021/la034895f

    Article  CAS  PubMed  Google Scholar 

  72. Katayose, S. and Kataoka, K., J. Pharm. Sci., 1998, vol. 87, p. 160. https://doi.org/10.1021/js970304s

    Article  CAS  PubMed  Google Scholar 

  73. Talingting, M.R., Voigt, U., Munk, P., and Webber, S.E., Macromolecules, 2000, vol. 33, p. 9612. https://doi.org/10.1021/ma001366z

    Article  CAS  Google Scholar 

  74. Cai, Y. and Armes, S.P., Macromolecules, 2004, vol. 37, p. 7116. https://doi.org/10.1021/ma048789b

    Article  CAS  Google Scholar 

  75. Mountrichas, G. and Pispas, S., J. Polym. Sci., Part A: Polym. Chem., 2007, vol. 45, p. 5790. https://doi.org/10.1002/pola

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper is based on the PhD thesis of one of the manuscript co-authors, Dr. Murmiliuk. The PhD thesis is available on https://dspace.cuni.cz/handle/20.500.11956/124884?locale-attribute=en.

Funding

SKF is grateful to the Leverhulme Trust for the visiting professorship grant (VP2-2020-013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anastasiia Murmiliuk or Sergey K. Filippov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

EDITORIAL STATEMENT

Evaluation and decision of acceptance of this paper was made by the Editorial board without input of the authors or any persons affiliated with them.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murmiliuk, A., Hladysh, S., Filippov, S.K. et al. Comprehensive Multidimensional Characterization of Polyelectrolytes and Interpolyelectrolyte Complexes in Aqueous Solutions. rev. and adv. in chem. 12, 163–177 (2022). https://doi.org/10.1134/S263482762260013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S263482762260013X

Keywords:

Navigation