Skip to main content
Log in

Integrable Systems Associated to the Filtrations of Lie Algebras

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

In 1983 Bogoyavlenski conjectured that, if the Euler equations on a Lie algebra \(\mathfrak{g}_{0}\) are integrable, then their certain extensions to semisimple lie algebras \(\mathfrak{g}\) related to the filtrations of Lie algebras \(\mathfrak{g}_{0}\subset\mathfrak{g}_{1}\subset\mathfrak{g}_{2}\dots\subset\mathfrak{g}_{n-1}\subset\mathfrak{g}_{n}=\mathfrak{g}\) are integrable as well. In particular, by taking \(\mathfrak{g}_{0}=\{0\}\) and natural filtrations of \({\mathfrak{so}}(n)\) and \(\mathfrak{u}(n)\), we have Gel’fand – Cetlin integrable systems. We prove the conjecture for filtrations of compact Lie algebras \(\mathfrak{g}\): the system is integrable in a noncommutative sense by means of polynomial integrals. Various constructions of complete commutative polynomial integrals for the system are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Notes

  1. The gradient is determined by an invariant metric: \(df(\xi)=\langle\nabla f(x),\xi\rangle\). Also, to simplify notation, the Lie brackets, the Lie – Poisson brackets and the gradients of the functions on \(\mathfrak{g}_{i}\) will be denoted by the same symbols as on \(\mathfrak{g}\), \(i=1,\dots,n\).

  2. In [6] the symplectic case is considered, but the proof can be easily modified to the Poisson case.

  3. \(\mathfrak{g}_{l}(x_{k})\) denotes the isotropy algebra of \(x_{k}\in\mathfrak{g}_{k}\) within \(\mathfrak{g}_{l}\):

    $$\displaystyle\mathfrak{g}_{l}(x_{k})=\{\xi\in\mathfrak{g}_{l}|[\xi,x_{k}]=0\},\qquad l\leqslant k.$$

    Generic means that the dimensions of the isotropy algebras \(\mathfrak{g}_{i}(x_{i})\) and \(\mathfrak{g}_{i-1}(x_{i})\) are minimal.

  4. By \(\langle\cdot,\cdot\rangle\) we also denote an invariant quadratic form on \(\mathfrak{g}^{\mathbb{C}}\), the extension of the invariant scalar product from \(\mathfrak{g}\) to \(\mathfrak{g}^{\mathbb{C}}\).

  5. Again, we use the same symbol for different objects. The restriction of \(\langle\cdot,\cdot\rangle\) to \(\mathfrak{g}\) is a positive definite invariant scalar product we are dealing with. Also, as above, we identify \(\mathfrak{h}\) and \(\mathfrak{h}^{*}\) by \(\langle\cdot,\cdot\rangle\).

References

  1. Bazaîkin, Ya. V., Double Quotients of Lie Groups with an Integrable Geodesic Flow, Siberian Math. J., 2000, vol. 41, no. 3, pp. 419–432; see also: Sibirsk. Mat. Zh., 2000, vol. 41, no. 3, pp. 513-530.

    Article  MathSciNet  Google Scholar 

  2. Bogoyavlenskii, O. I., Integrable Euler Equations Associated with Filtrations of Lie Algebras, Math. USSR-Sb., 1984, vol. 49, no. 1, pp. 229–238; see also: Mat. Sb. (N.S.), 1983, vol. 121(163), no. 2(6), pp. 233-242.

    Article  Google Scholar 

  3. Bolsinov, A. V., Compatible Poisson Brackets on Lie Algebras and the Completeness of Families of Functions in Involution, Math. USSR-Izv., 1992, vol. 38, no. 1, pp. 69–90; see also: Izv. Akad. Nauk SSSR Ser. Mat., 1991, vol. 55, no. 1, pp. 68-92.

    Article  MathSciNet  MATH  Google Scholar 

  4. Bolsinov, A. V., Complete Commutative Subalgebras in Polynomial Poisson Algebras: A Proof of the Mischenko – Fomenko Conjecture, Theor. Appl. Mech., 2016, vol. 43, no. 2, pp. 145–168.

    Article  MATH  Google Scholar 

  5. Bolsinov, A. V. and Jovanović, B., Integrable Geodesic Flows on Homogeneous Spaces, Sb. Math., 2001, vol. 192, no. 7, pp. 951–968; see also: Mat. Sb., 2001, vol. 192, no. 7, pp. 21-40.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolsinov, A. V. and Jovanović, B., Non-Commutative Integrability, Moment Map and Geodesic Flows, Ann. Glob. Anal. Geom., 2003, vol. 23, no. 4, pp. 305–322.

    Article  MATH  Google Scholar 

  7. Bolsinov, A. V. and Jovanović, B., Complete Involutive Algebras of Functions on Cotangent Bundles of Homogeneous Spaces, Math. Z., 2004, vol. 246, no. 1–2, pp. 213–236.

    Article  MathSciNet  MATH  Google Scholar 

  8. Brailov, A. V., Construction of Completely Integrable Geodesic Flows on Compact Symmetric Spaces, Math. USSR-Izv., 1987, vol. 29, no. 1, pp. 19–31; see also: Izv. Akad. Nauk SSSR Ser. Mat., 1986, vol. 50, no. 4, pp. 661-674, 877.

    Article  MATH  Google Scholar 

  9. Dragović, V., Gajić, B., and Jovanović, B., Singular Manakov Flows and Geodesic Flows of Homogeneous Spaces of \({\rm SO}(N)\), Transfom. Groups, 2009, vol. 14, no. 3, pp. 513–530.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dragović, V., Gajić, B., and Jovanović, B., On the Completeness of the Manakov Integrals, J. Math. Sci. (N.Y.), 2017, vol. 223, no. 6, pp. 675–685; see also: Fundam. Prikl. Mat., 2015, vol. 20, no. 2, pp. 35-49.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kozlov, V. V. and Fedorov, Yu. N., Various Aspects of \(n\)-Dimensional Rigid Body Dynamics, in Dynamical Systems in Classical Mechanics, Amer. Math. Soc. Transl. Ser. 2, vol. 168, Providence, R.I.: AMS, 1995, pp. 141–171.

    Google Scholar 

  12. Gel’fand, I. and Tsetlin, M., Finite-Dimensional Representation of the Group of Unimodular Matrices, Dokl. Akad. Nauk SSSR, 1950, vol. 71, pp. 825–828 (Russian).

    MathSciNet  MATH  Google Scholar 

  13. Gel’fand, I. and Tsetlin, M., Finite-Dimensional Representation of the Group of Orthogonal Matrices, Dokl. Akad. Nauk SSSR, 1950, vol. 71, pp. 1017–1020 (Russian).

    MathSciNet  MATH  Google Scholar 

  14. Guillemin, V. and Sternberg, Sh., On Collective Complete Integrability According to the Method of Thimm, Ergodic Theory Dynam. Systems, 1983, vol. 3, no. 2, pp. 219–230.

    Article  MathSciNet  MATH  Google Scholar 

  15. Guillemin, V. and Sternberg, Sh., The Gel’fand – Cetlin System and Quantization of the Complex Flag Manifolds, J. Funct. Anal., 1983, vol. 52, no. 1, pp. 106–128.

    Article  MathSciNet  MATH  Google Scholar 

  16. Guillemin, V. and Sternberg, Sh., Multiplicity-Free Spaces, J. Differential Geom., 1984, vol. 19, no. 1, pp. 31–56.

    Article  MathSciNet  MATH  Google Scholar 

  17. Harada, M., The Symplectic Geometry of the Gel’fand – Cetlin – Molev Basis for Representations of \({\rm Sp}(2n,{\mathbb{C}})\), J. Symplectic Geom., 2006, vol. 4, no. 1, pp. 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  18. Heckman, G. J., Projections of Orbits and Asymptotic Behavior of Multiplicities for Compact Connected Lie Groups, Invent. Math., 1982, vol. 67, no. 2, pp. 333–356.

    Article  MathSciNet  MATH  Google Scholar 

  19. Jovanović, B., Geometry and Integrability of Euler – Poincaré – Suslov Equations, Nonlinearity, 2001, vol. 14, no. 6, pp. 1555–1567.

    Article  MathSciNet  MATH  Google Scholar 

  20. Jovanović, B., Integrability of Invariant Geodesic Flows on \(n\)-Symmetric Spaces, Ann. Global Anal. Geom., 2010, vol. 38, no. 3, pp. 305–316.

    Article  MathSciNet  MATH  Google Scholar 

  21. Jovanović, B., Geodesic Flows on Riemannian g.o. Spaces, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 504–513.

    Article  MathSciNet  MATH  Google Scholar 

  22. Krämer, M., Multiplicity Free Subgroups of Compact Connected Lie Groups, Arch. Math. (Basel), 1976, vol. 27, no. 1, pp. 28–36.

    Article  MathSciNet  MATH  Google Scholar 

  23. Lompert, K. and Panasyuk, A., Invariant Nijenhuis Tensors and Integrable Geodesic Flows, SIGMA Symmetry Integrability Geom. Methods Appl., 2019, vol. 15, Paper No. 056, 30 pp.

    MathSciNet  MATH  Google Scholar 

  24. Manakov, S. V., Note on the Integration of Euler’s Equations of the Dynamics of an \(n\)-Dimensional Rigid Body, Funct. Anal. Appl., 1976, vol. 10, no. 4, pp. 328–329; see also: Funktsional. Anal. i Prilozhen., 1976, vol. 10, no. 4, pp. 93-94.

    Article  MATH  Google Scholar 

  25. Mikityuk, I. V., Integrability of the Euler Equations Associated with Filtrations of Semisimple Lie Algebras, Math. USSR-Sb., 1986, vol. 53, no. 2, pp. 541–549; see also: Mat. Sb., 1984, vol. 125(167), no. 4, pp. 539-546.

    Article  MathSciNet  MATH  Google Scholar 

  26. Mikityuk, I. V., Integrability of Geodesic Flows for Metrics on Suborbits of the Adjoint Orbits of Compact Groups, Transform. Groups, 2016, vol. 21, no. 2, pp. 531–553.

    Article  MathSciNet  Google Scholar 

  27. Mykytyuk, I. V. and Panasyuk, A., Bi-Poisson Structures and Integrability of Geodesic Flows on Homogeneous Spaces, Transform. Groups, 2004, vol. 9, no. 3, pp. 289–308.

    Article  MathSciNet  MATH  Google Scholar 

  28. Mishchenko, A. S. and Fomenko, A. T., Euler Equations on Finite-Dimensional Lie Groups, Math. USSR-Izv., 1978, vol. 12, no. 2, pp. 371–389; see also: Izv. Akad. Nauk SSSR. Ser. Mat., 1978, vol. 42, no. 2, pp. 396-415, 471.

    Article  MathSciNet  MATH  Google Scholar 

  29. Mishchenko, A. S. and Fomenko, A. T., Generalized Liouville Method of Integration of Hamiltonian Systems, Func. Anal. Appl., 1978, vol. 12, no. 2, pp. 113–121; see also: Funktsional. Anal. i Prilozhen., 1978, vol. 12, no. 2, pp. 46-56.

    Article  MathSciNet  MATH  Google Scholar 

  30. Nekhoroshev, N. N., Action–Angle Variables and Their Generalization, Trans. Moscow Math. Soc., 1972, vol. 26, pp. 180–198; see also: Tr. Mosk. Mat. Obs., 1972, vol. 26, pp. 181-198.

    MathSciNet  MATH  Google Scholar 

  31. Panyushev, D. I. and Yakimova, O. S., Poisson-Commutative Subalgebras of \(\mathcal{S}(\mathfrak{g})\) Associated with Involutions, Int. Math. Res. Not., 2021, vol. 2021, no. 23, pp. 18367–18406.

    Article  MathSciNet  MATH  Google Scholar 

  32. Panyushev, D. I. and Yakimova, O. S., Reductive Subalgebras of Semisimple Lie Algebras and Poisson Commutativity, arXiv:2012.04014 (2020).

  33. Reiman, A. G., Integrable Hamiltonian Systems Connected with Graded Lie Algebras, J. Math. Sci., 1982, vol. 19, pp. 1507–1545; see also: Zap. Nauchn. Semin. LOMI AN SSSR, 1980, vol. 95, pp. 3-54.

    Article  Google Scholar 

  34. Sadetov, S. T., A Proof of the Mishchenko – Fomenko Conjecture (1981), Dokl. Akad. Nauk, 2004, vol. 397, no. 6, pp. 751–754 (Russian).

    MathSciNet  MATH  Google Scholar 

  35. Thimm, A., Integrable Geodesic Flows on Homogeneous Spaces, Ergodic Theory Dynam. Systems, 1981, vol. 1, no. 4, pp. 495–517.

    Article  MathSciNet  MATH  Google Scholar 

  36. Trofimov, V. V., Euler Equations on Borel Subalgebras of Semisimple Lie Groups, Math. USSR-Izv., 1980, vol. 14, no. 3, pp. 653–670; see also: Izv. Acad. Nauk SSSR. Ser. Mat., 1979, vol. 43, no. 3, pp. 714-732.

    Article  MATH  Google Scholar 

  37. Trofimov, V. V. and Fomenko, A. T., Algebra and Geometry of Integrable Hamiltonian Differential Equations, Moscow: Faktorial, 1995 (Russian).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the referees for a thorough review and constructive comments that have greatly improved quality of the paper.

Funding

This research is supported by Project 7744592 MEGIC, Integrability and Extremal Problems in Mechanics, Geometry and Combinatorics, of the Science Fund of Serbia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Božidar Jovanović, Tijana Šukilović or Srdjan Vukmirović.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

MSC2010

37J35, 17B63, 17B80, 53D20

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jovanović, B., Šukilović, T. & Vukmirović, S. Integrable Systems Associated to the Filtrations of Lie Algebras. Regul. Chaot. Dyn. 28, 44–61 (2023). https://doi.org/10.1134/S1560354723010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354723010045

Keywords

Navigation