Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Transition Metal-free α-C-H Functionalization of Tertiary Amines Catalysed/ Promoted by Acids: A Brief Review

Author(s): Mohit L. Deb* and Pranjal K. Baruah*

Volume 21, Issue 4, 2024

Published on: 28 April, 2023

Page: [445 - 454] Pages: 10

DOI: 10.2174/1570193X20666230309091635

Price: $65

Abstract

C-H Functionalization of α-carbon of tertiary amines has been of great importance for the past two decades as N-heterocycles can be synthesized by this approach and these heterocycles are highly useful as drugs or drug precursors in the pharmaceutical industry. In this review article, we have summarized only the α-C-H functionalization reactions of tertiary amines that are catalysed or promoted by acids. These C-H functionalization reactions are usually catalysed by transition metal salts, although metal-free catalysts are also used. However, several such reactions have been reported that are efficiently catalysed by acids. They are cost-effective, have a simple purification process, less sensitive to air/moisture, and are relatively environmentally benign. However, this area has not received enough focus due to the lack of review articles, which encouraged us to write this review.

Keywords: C-H functionalization, acid catalyst, transition metal-free, tert-amine, N-heterocycle, H-shift.

Graphical Abstract
[1]
Li, C.J. Cross-Dehydrogenative Coupling (CDC): Exploring C-C bond formations beyond functional group transformations. Acc. Chem. Res., 2009, 42(2), 335-344.
[http://dx.doi.org/10.1021/ar800164n] [PMID: 19220064]
[2]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[3]
Scheuermann, C.J. Beyond traditional cross couplings: The scope of the cross dehydrogenative coupling reaction. Chem. Asian J., 2010, 5(3), 436-451.
[http://dx.doi.org/10.1002/asia.200900487] [PMID: 20041458]
[4]
Yeung, C.S.; Dong, V.M. Catalytic dehydrogenative cross-coupling: Forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev., 2011, 111(3), 1215-1292.
[http://dx.doi.org/10.1021/cr100280d] [PMID: 21391561]
[5]
Klussmann, M.; Sureshkumar, D. Catalytic oxidative coupling reactions for the formation of carbon-carbon bonds without carbon-metal intermediates. Synthesis, 2011, 2011(3), 353-369.
[http://dx.doi.org/10.1055/s-0030-1258303]
[6]
Yao, W.; Wang, J.; Lou, Y.; Wu, H.; Qi, X.; Yang, J.; Zhong, A. Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst. Org. Chem. Front., 2021, 8(16), 4554-4559.
[http://dx.doi.org/10.1039/D1QO00705J]
[7]
Cho, S.H.; Kim, J.Y.; Kwak, J.; Chang, S. Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem. Soc. Rev., 2011, 40(10), 5068-5083.
[http://dx.doi.org/10.1039/c1cs15082k] [PMID: 21643614]
[8]
Yao, W.; He, L.; Han, D.; Zhong, A. Sodium triethylborohydride-catalyzed controlled reduction of unactivated amides to secondary or tertiary amines. J. Org. Chem., 2019, 84(22), 14627-14635.
[http://dx.doi.org/10.1021/acs.joc.9b02211] [PMID: 31663738]
[9]
Yao, W.; Wang, J.; Zhong, A.; Wang, S.; Shao, Y. Transition-metal-free catalytic hydroboration reduction of amides to amines. Org. Chem. Front., 2020, 7(21), 3515-3520.
[http://dx.doi.org/10.1039/D0QO01092H]
[10]
Wang, Y.F.; Wang, C.J.; Feng, Q.Z.; Zhai, J.J.; Qi, S.S.; Zhong, A.G.; Chu, M.M.; Xu, D.Q. Copper-catalyzed asymmetric 1,6-conjugate addition of in situ generated para-quinone methides with β-ketoesters. Chem. Commun. , 2022, 58(46), 6653-6656.
[http://dx.doi.org/10.1039/D2CC00146B] [PMID: 35593224]
[11]
Yang, Q.; Wen, Y.; Zhong, A.; Xu, J.; Shao, S. An HBT-based fluorescent probe for nitroreductase determination and its application in Escherichia coli cell imaging. New J. Chem., 2020, 44(38), 16265-16268.
[http://dx.doi.org/10.1039/D0NJ03286G]
[12]
Chen, D.; Jiang, J.; Wan, J.P. Advances in the transition metal‐Free C—H Trifluoromethylation. Chin. J. Chem., 2022, 40(21), 2582-2594.
[http://dx.doi.org/10.1002/cjoc.202200347]
[13]
Saroha, M.; Sindhu, J.; Kumar, S.; Bhasin, K.K.; Khurana, J.M.; Varma, R.S.; Tomar, D. Transition metal‐free sulfenylation of C−H Bonds for C−S bond formation in recent years: Mechanistic approach and promising future. ChemistrySelect, 2021, 6(46), 13077-13208.
[http://dx.doi.org/10.1002/slct.202102042]
[14]
Liu, C.; Zhang, H.; Shi, W.; Lei, A. Bond formations between two nucleophiles: Transition metal catalyzed oxidative cross-coupling reactions. Chem. Rev., 2011, 111(3), 1780-1824.
[http://dx.doi.org/10.1021/cr100379j] [PMID: 21344855]
[15]
Girard, S.A.; Knauber, T.; Li, C.J. The cross-dehydrogenative coupling of C(sp3)-H bonds: A versatile strategy for C-C bond formations. Angew. Chem. Int. Ed., 2014, 53(1), 74-100.
[http://dx.doi.org/10.1002/anie.201304268] [PMID: 24214829]
[16]
Shi, Z.; Glorius, F. Efficient and versatile synthesis of indoles from enamines and imines by cross-dehydrogenative coupling. Angew. Chem. Int. Ed., 2012, 51(37), 9220-9222.
[http://dx.doi.org/10.1002/anie.201205079] [PMID: 22903775]
[17]
Zhang, C.; Tang, C.; Jiao, N. Recent advances in copper-catalyzed dehydrogenative functionalization via a single electron transfer (SET) process. Chem. Soc. Rev., 2012, 41(9), 3464-3484.
[http://dx.doi.org/10.1039/c2cs15323h] [PMID: 22349590]
[18]
Elderfield, R.C. Heterocyclic Compounds; John Wiley & Sons: New York, USA,, 1957, p. 6.
[19]
Brown, D.J. Comprehensive Heterocyclic Chemistry; Katritzky, A.R.; Rees, C.W., Eds; Pergamon Press: Oxford, UK, 1984, pp. 1-8.
[20]
Heravi, M.M.; Zadsirjan, V.; Farajpour, B. Applications of oxazolidinones as chiral auxiliaries in the asymmetric alkylation reaction applied to total synthesis. RSC Advances, 2016, 6(36), 30498-30551.
[http://dx.doi.org/10.1039/C6RA00653A]
[21]
Maison, W. Heterocycles as Chiral Auxillaries in Asymmetric Synthesis; Braun, M., Ed.; Springer: Berlin, Heidelberg, 2019, Vol. 55, pp. 157-191.
[http://dx.doi.org/10.1007/7081_2019_34]
[22]
Benowitz, N.L. Pharmacology of nicotine: Addiction, smoking-induced disease, and therapeutics. Annu. Rev. Pharmacol. Toxicol., 2009, 49(1), 57-71.
[http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094742] [PMID: 18834313]
[23]
Roelofse, J.A.; Van der Bijl, P.; Joubert, J.J. Analgesic and anti-inflammatory efficacy of tenoxicam and diclofenac sodium after third molar surgery. Anesth. Prog., 1996, 43(4), 103-107.
[PMID: 10323115]
[24]
Arai, A.C.; Kessler, M.; Rogers, G.; Lynch, G. Effects of the potent ampakine CX614 on hippocampal and recombinant AMPA receptors: interactions with cyclothiazide and GYKI 52466. Mol. Pharmacol., 2000, 58(4), 802-813.
[http://dx.doi.org/10.1124/mol.58.4.802] [PMID: 10999951]
[25]
Soto, P.L.; Ator, N.A.; Rallapalli, S.K.; Biawat, P.; Clayton, T.; Cook, J.M.; Weed, M.R. Allosteric modulation of GABA(A) receptor subtypes: Effects on visual recognition and visuospatial working memory in rhesus monkeys. Neuropsychopharmacology, 2013, 38(11), 2315-2325.
[http://dx.doi.org/10.1038/npp.2013.137] [PMID: 23722241]
[26]
Zhou, M.J.; Zhu, S.F.; Zhou, Q.L. Copper-catalyzed mannich-type oxidative β-functionalization of tertiary amines. Chem. Commun. , 2017, 53(62), 8770-8773.
[http://dx.doi.org/10.1039/C7CC04761D] [PMID: 28730201]
[27]
Zhu, Y.; Shao, L.D.; Deng, Z.T.; Bao, Y.; Shi, X.; Zhao, Q.S. PIDA/I2-mediated α- and β-C(sp3)–H bond dual functionalization of tertiary amines. J. Org. Chem., 2018, 83(17), 10166-10174.
[http://dx.doi.org/10.1021/acs.joc.8b01424] [PMID: 30032617]
[28]
Rodrigalvarez, J.; Nappi, M.; Azuma, H.; Flodén, N.J.; Burns, M.E.; Gaunt, M.J. Catalytic C(sp3)–H bond activation in tertiary alkylamines. Nat. Chem., 2020, 12(1), 76-81.
[http://dx.doi.org/10.1038/s41557-019-0393-8] [PMID: 31863014]
[29]
Murahashi, S.I.; Komiya, N.; Terai, H.; Nakae, T. Aerobic ruthenium-catalyzed oxidative cyanation of tertiary amines with sodium cyanide. J. Am. Chem. Soc., 2003, 125(50), 15312-15313.
[http://dx.doi.org/10.1021/ja0390303] [PMID: 14664574]
[30]
Murahashi, S.I.; Komiya, N.; Terai, H. Ruthenium-catalyzed oxidative cyanation of tertiary amines with hydrogen peroxide and sodium cyanide. Angew. Chem. Int. Ed., 2005, 44(42), 6931-6933.
[http://dx.doi.org/10.1002/anie.200501496] [PMID: 16193527]
[31]
Li, Z.; Li, C.J. CuBr-catalyzed efficient alkynylation of sp3 C-H bonds adjacent to a nitrogen atom. J. Am. Chem. Soc., 2004, 126(38), 11810-11811.
[http://dx.doi.org/10.1021/ja0460763] [PMID: 15382913]
[32]
Li, Z.; Bohle, D.S.; Li, C.J. Cu-catalyzed cross-dehydrogenative coupling: A versatile strategy for C–C bond formations via the oxidative activation of sp3 C–H bonds. Proc. Natl. Acad. Sci. , 2006, 103(24), 8928-8933.
[http://dx.doi.org/10.1073/pnas.0601687103] [PMID: 16754869]
[33]
Deb, M.L.; Saikia, B.S.; Borpatra, P.J.; Baruah, P.K. α-C–H functionalization of tertiary amines catalyzed/promoted by molecular iodine/derivatives. New J. Chem., 2021, 45(32), 14345-14359.
[http://dx.doi.org/10.1039/D1NJ02695J]
[34]
Gong, M.; Huang, J.M. Electrochemical oxidative C−H/N−H coupling between γ-lactams and anilines. Chemistry, 2016, 22(40), 14293-14296.
[http://dx.doi.org/10.1002/chem.201602454] [PMID: 27529163]
[35]
Kärkäs, M.D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev., 2018, 47(15), 5786-5865.
[http://dx.doi.org/10.1039/C7CS00619E] [PMID: 29911724]
[36]
Deb, M.L.; Saikia, B.S.; Borpatra, P.J.; Baruah, P.K. Progress of metal‐free visible‐light‐driven α-C−H functionalization of tertiary amines: A decade journey. Asian J. Org. Chem., 2022, 11(5)e202100706
[http://dx.doi.org/10.1002/ajoc.202100706]
[37]
Peng, B.; Maulide, N. The redox-neutral approach to C-H functionalization. Chemistry, 2013, 19(40), 13274-13287.
[http://dx.doi.org/10.1002/chem.201301522] [PMID: 24027042]
[38]
Haibach, M.C.; Seidel, D. C-H bond functionalization through intramolecular hydride transfer. Angew. Chem. Int. Ed., 2014, 53(20), 5010-5036.
[http://dx.doi.org/10.1002/anie.201306489] [PMID: 24706531]
[39]
Seidel, D. The azomethine ylide route to amine C-H functionalization: redox-versions of classic reactions and a pathway to new transformations. Acc. Chem. Res., 2015, 48(2), 317-328.
[http://dx.doi.org/10.1021/ar5003768] [PMID: 25560649]
[40]
Mahato, S.; Jana, C.K. Classical-reaction-driven stereo- and regioselective C(sp3)-H functionalization of aliphatic amines. Chem. Rec., 2016, 16(3), 1477-1488.
[http://dx.doi.org/10.1002/tcr.201600001] [PMID: 27185195]
[41]
Zhang, C.; Murarka, S.; Seidel, D. Facile formation of cyclic aminals through a Brønsted acid-promoted redox process. J. Org. Chem., 2009, 74(1), 419-422.
[http://dx.doi.org/10.1021/jo802325x] [PMID: 19053590]
[42]
Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Expeditious construction of quinazolines via brønsted acid-induced C–H activation: Further extension of “ tert-amino effect. Chem. Lett., 2009, 38(6), 524-525.
[http://dx.doi.org/10.1246/cl.2009.524]
[43]
Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. Selective activation of enantiotopic C(sp3)-hydrogen by means of chiral phosphoric acid: Asymmetric synthesis of tetrahydroquinoline derivatives. J. Am. Chem. Soc., 2011, 133(16), 6166-6169.
[http://dx.doi.org/10.1021/ja2014955] [PMID: 21466211]
[44]
Haibach, M.C.; Deb, I.; De, C.K.; Seidel, D. Redox-neutral indole annulation cascades. J. Am. Chem. Soc., 2011, 133(7), 2100-2103.
[http://dx.doi.org/10.1021/ja110713k] [PMID: 21280625]
[45]
Chen, D.F.; Han, Z.Y.; He, Y.P.; Yu, J.; Gong, L.Z. Metal-free oxidation/C(sp3)-H functionalization of unactivated alkynes using pyridine-N-oxide as the external oxidant. Angew. Chem. Int. Ed., 2012, 51(49), 12307-12310.
[http://dx.doi.org/10.1002/anie.201205062] [PMID: 23109289]
[46]
Schweitzer-Chaput, B.; Klussmann, M. Brønsted acid catalyzed C-H functionalization of n-protected tetrahydroisoquinolines via intermediate peroxides. Eur. J. Org. Chem., 2013, 2013(4), 666-671.
[http://dx.doi.org/10.1002/ejoc.201201527]
[47]
Richers, M.T.; Breugst, M.; Platonova, A.Y.; Ullrich, A.; Dieckmann, A.; Houk, K.N.; Seidel, D. Redox-neutral α-oxygenation of amines: Reaction development and elucidation of the mechanism. J. Am. Chem. Soc., 2014, 136(16), 6123-6135.
[http://dx.doi.org/10.1021/ja501988b] [PMID: 24689802]
[48]
Chang, Y.Z.; Li, M.L.; Zhao, W.F.; Wen, X.; Sun, H.; Xu, Q.L. Construction of oxadiazepines via lewis acid-catalyzed tandem 1,5-hydride shift/cyclization. J. Org. Chem., 2015, 80(19), 9620-9627.
[http://dx.doi.org/10.1021/acs.joc.5b01609] [PMID: 26376091]
[49]
Shang, M.; Chan, J.Z.; Cao, M.; Chang, Y.; Wang, Q.; Cook, B.; Torker, S.; Wasa, M. C–H functionalization of amines via alkene-derived nucleophiles through cooperative action of chiral and achiral lewis acid catalysts: Applications in enantioselective synthesis. J. Am. Chem. Soc., 2018, 140(33), 10593-10601.
[http://dx.doi.org/10.1021/jacs.8b06699] [PMID: 30045617]
[50]
Chan, J.Z.; Yesilcimen, A.; Cao, M.; Zhang, Y.; Zhang, B.; Wasa, M. Direct conversion of N -Alkylamines to N-Propargylamines through C–H activation promoted by lewis acid/organocopper catalysis: Application to late-stage functionalization of bioactive molecules. J. Am. Chem. Soc., 2020, 142(38), 16493-16505.
[http://dx.doi.org/10.1021/jacs.0c08599] [PMID: 32830966]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy