Skip to main content
Log in

Possible regulation of ganglioside GD3 synthase gene expression with DNA methylation in human glioma cells

  • Research Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Gangliosides are expressed in nervous systems and some neuroectoderm-derived tumors at high levels and play pivotal roles. However, mechanisms for the regulation of glycosyltransferase genes responsible for the ganglioside synthesis are not well understood. In this study, we analyzed DNA methylation patterns of promoter regions of GD3 synthase (ST8SIA1) as well as mRNA levels and ganglioside expression using human glioma cell lines. Among 5 cell lines examined, 4 lines showed changes in the expression levels of related genes after treatment with 5-aza-dC. LN319 showed up-regulation of St8sia1 and increased b-series gangliosides after 5-aza-dC treatment, and an astrocytoma cell line, AS showed high expression of ST8SIA1 and b-series gangliosides persistently before and after 5-Aza-2’-deoxycytidine treatment. Using these 2 cell lines, DNA methylation patterns of the promoter regions of the gene were analyzed by bisulfite-sequencing. Consequently, 2 regions that were methylated before 5-Aza-2’-deoxycytidine treatment were demethylated in LN319 after the treatment, while those regions were persistently demethylated in AS. These 2 regions corresponded with sites defined as promoter regions by Luciferase assay. Taken together, it was suggested that ST8SIA1 gene is regulated by DNA methylation at the promoter regions, leading to the regulation of tumor phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data are available. Koichi Furukawa should be contacted if someone wants to request the data from this study.

Abbreviations

ST8SIA1:

α2,8-sialyltransferase, GD3 synthase

KO:

Knockout

qRT-PCR:

Quantitative reverse transcription-polymerase chain reaction

DMEM:

Dulbecco’s modified Eagle’s medium

5-aza-dC:

5-Aza-2’-deoxycytidine

FBS:

Fetal bovine serum

mAb:

Monoclonal antibody

References

  1. Wiegandt, H.: In: Wiegandt, H. (ed.) Gangliosides, pp. 199–260. Glycolipids, Elsevier, New York (1985)

    Google Scholar 

  2. Gorio, A.: Ganglioside enhancement of neuronal differentiation, plasticity, and repair. CRC Crit. Rev. Clin. Neuroboil. 2, 241–296 (1986)

    CAS  Google Scholar 

  3. Yu, R.K., Macala, L.J., Taki, T., Weinfield, H.M., Yu, F.S.: Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 50, 1825–1829 (1988)

    Article  CAS  PubMed  Google Scholar 

  4. Schauer, R.: Sialic acids as regulators of molecular and cellular interactions. Curr. Opin. Struct. Biol. 5, 507–514 (2009). https://doi.org/10.1016/j.sbi.2009.06.003

    Article  CAS  Google Scholar 

  5. Nagata, Y., Yamashiro, S., Yodoi, J., Lloyd, K.O., Shiku, H., Furukawa, K.: Expression cloning of beta 1,4 N-acetylgalactosaminyltransferase cDNAs that determine the expression of GM2 and GD2 gangliosides. J. Biol. Chem. 267, 12082–12089 (1992)

    Article  CAS  PubMed  Google Scholar 

  6. Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., Fukumoto, S., Haraguchi, M., Takeda, N., Fujimura, K., Sakae, M., Kishikawa, M., Shiku, H., Furukawa, K., Aizawa, S.: Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc. Natl. Acad. Sci. USA. 93, 10662–10667 (1996). https://doi.org/10.1073/pnas.93.20.10662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sugiura, Y., Furukawa, K., Tajima, O., Mii, S., Honda, T., Furukawa, K.: Sensory nerve-dominant nerve degeneration and remodeling in the mutant mice lacking complex gangliosides. Neuroscience. 135, 1167–1178 (2005). https://doi.org/10.1016/j.neuroscience.2005.07.035

    Article  CAS  PubMed  Google Scholar 

  8. Kittaka, D., Itoh, M., Ohmi, Y., Kondo, Y., Fukumoto, S., Urano, T., Tajima, O., Furukawa, K., Furukawa, K.: Impaired hypoglossal nerve regeneration in mutant mice lacking complex gangliosides: down-regulation of neurotrophic factors and receptors as possible mechanisms. Glycobiology. 18, 509–516 (2008). https://doi.org/10.1093/glycob/cwn032

    Article  CAS  PubMed  Google Scholar 

  9. Itoh, M., Fukumoto, S., Iwamoto, T., Mizuno, A., Rokutanda, A., Ishida, H.K., Kiso, M., Furukawa, K.: Specificity of carbohydrate structures of gangliosides in the activity to regenerate the rat axotomized hypoglossal nerve. Glycobiology. 11, 843–846 (2001). https://doi.org/10.1093/glycob/11.2.125

    Article  Google Scholar 

  10. Schneider, J.S., Pope, A., Simpson, K., Taggart, J., Smith, M.G., DiStefano, L.: Recovery from experimental parkinsonism in primates with GM1 ganglioside treatment. Science. 256, 843–846 (1992). https://doi.org/10.1126/science.1350379

    Article  CAS  PubMed  Google Scholar 

  11. Furukawa, K., Ohmi, Y., Yesmin, F., Tajima, O., Kondo, Y., Zhang, P., Hashimoto, P., Ohkawa, N., Bhuiyan, Y., Furukawa, R.H.: K.: Novel molecular mechanisms for roles of gangliosides in the nervous system elucidated by genetic engineering. Int. J Mol Sci. 21(6), E1906 (2020). https://doi.org/10.3390/ijms21061906

  12. Hamamura, K., Furukawa, K., Hayashi, T., Hattori, T., Nakano, J., Nakashima, H., Okuda, T., Mizutani, H., Hattori, H., Ueda, M., Urano, T., Lloyd, K.O., Furukawa, K.: Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc. Natl. Acad. Sci. USA. 102, 11041–11046 (2005). https://doi.org/10.1073/pnas.0503658102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hamamura, K., Tsuji, M., Hotta, H., Ohkawa, Y., Takahashi, M., Shibuya, H., Nakashima, H., Yamauchi, Y., Hashimoto, N., Hattori, H., Ueda, M., Furukawa, K., Furukawa, K.: Functional activation of src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J. Biol. Chem. 286, 18526–18537 (2011). https://doi.org/10.1074/jbc.M110.164798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ohkawa, Y., Miyazaki, S., Hamamura, K., Kambe, M., Miyata, M., Tajima, O., Ohmi, Y., Yamauchi, Y., Furukawa, K., Furukawa, K.: Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J. Biol. Chem. 285, 27213–27223 (2010). https://doi.org/10.1074/jbc.M109.087791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aixinjueluo, W., Furukawa, K., Zhang, Q., Hamamura, K., Tokuda, N., Yoshida, S., Ueda, R., Furukawa, K.: Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal antibodies: roles of anoikis. J. Biol. Chem. 386, 29828–29836 (2005). https://doi.org/10.1074/jbc.M414041200

    Article  CAS  Google Scholar 

  16. Yoshida, S., Fukumoto, S., Kawaguchi, H., Sato, S., Ueda, R., Furukawa, K.: Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res. 61, 4244–4252 (2001)

    CAS  PubMed  Google Scholar 

  17. Shibuya, H., Hamamura, K., Hotta, H., Matsumoto, Y., Nishida, Y., Hattori, H., Furukawa, K., Ueda, M., Furukawa, K.: Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci. 103, 1656–1664 (2012). https://doi.org/10.1111/j.1349-7006.2012.02344.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cazet, A., Bobowski, M., Rombouts, Y., Lefebvre, J., Steenackers, A., Popa, I., Guéradel, Y., Bourhis, X.L., Tulasne, D., Delannoy, P.: The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology. 22, 806–816 (2012). https://doi.org/10.1093/glycob/cws049

    Article  CAS  PubMed  Google Scholar 

  19. Furukawa, K., Soejima, H., Niikawa, N., Shiku, H., Furukawa, K.: Genomic organaization and chromosomal assignment of the human β1,4-N-acetylgalactosaminyltransferase gene. J. Biol. Chem. 271, 20836–20844 (1996). https://doi.org/10.1074/jbc.271.34.20836

    Article  CAS  PubMed  Google Scholar 

  20. Furukawa, K., Horie, H., Okutomi, K., Sugano, S., Furukawa, K.: Isolation and functional analysis of the melanoma specific promoter region of human GD3 synthase gene. Isolation and functional analysis of the melanoma specific promoter region of human GD3 synthase gene. Biochim. Biophys. Acta. 1627, 71–78 (2003). https://doi.org/10.1016/s0167-4781(03)00076-9

    Article  CAS  PubMed  Google Scholar 

  21. Kang, N.Y., Kim, C.H., Kim, K.S., Ko, J.H., Lee, J.H., Jeong, Y.K., Lee, Y.C.: Expression of the human CMP-NeuAc:GM3 alpha2,8-sialyltransferase (GD3 synthase) gene through the NF-kappaB activation in human melanoma SK-MEL-2 cells. Biochim. Biophys. Acta. 1769(11–12), 622–630 (2007). https://doi.org/10.1016/j.bbaexp.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  22. Reik, W.: Stability and flexibility of epigenetic gene regulation in mammalian development. Nature. 447, 425–432 (2007). https://doi.org/10.1038/nature05918

    Article  CAS  PubMed  Google Scholar 

  23. Bird, A.: DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002). https://doi.org/10.1101/gad.947102

    Article  CAS  PubMed  Google Scholar 

  24. Esteller, M.: Epigenetics in cancer. N Engl. J. Med. 358, 1148–1159 (2008). https://doi.org/10.1056/NEJMra072067

    Article  CAS  PubMed  Google Scholar 

  25. Xie, Q., Mittal, S., Berens, M.E.: Targeting adaptive glioblastoma: an overview of proliferation and invasion. NeuroOncol. 16(12), 1575–1584 (2014). https://doi.org/10.1093/neuonc/nou147

    Article  CAS  Google Scholar 

  26. Woehrer, A., Bauchet, L., Barnholtz-Sloan, J.S.: Glioblastoma survival: has it improved? Evidence from population-based studies. Curr. Opin. Neurol. 27(6), 666–674 (2014). https://doi.org/10.1097/WCO.0000000000000144

    Article  PubMed  Google Scholar 

  27. Marenco-Hillembrand, L., Wijesekera, O., Suarez-Meade, P., Mampre, D., Jackson, C., Peterson, J., Trifiletti, D., Hammack, J., Ortiz, K., Lesser, E., Spiegel, M., Prevatt, C., Hawayek, M., Quinones-Hinojosa, A., Chaichana, K.L.: Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J. Neurooncol. 147(2), 297–307 (2020). https://doi.org/10.1007/s11060-020-03451-6

    Article  PubMed  Google Scholar 

  28. Iwasawa, T., Zhang, P., Ohkawa, Y., Momota, H., Wakabayashi, T., Ohmi, Y., Bhuiyan, H.R., Furukawa, K., Furukawa, K.: Enhancement of malignant properties of human glioma cells by ganglioside GD3/GD2. Int. J. Oncol. 52(4), 1255–1266 (2018). https://doi.org/10.3892/ijo.2018.4266

    Article  CAS  PubMed  Google Scholar 

  29. Nagai, Y.: Functional roles of gangliosides in bio-signaling. Behav. Brain Res. 66(1–2), 99–104 (1995). https://doi.org/10.1016/0166-4328(94)00130-8

    Article  CAS  PubMed  Google Scholar 

  30. Todeschini, A.R., Hakomori, S.I.: Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. Biochim. Biophys. Acta. 1780(3), 421–433 (2008). https://doi.org/10.1016/j.bbagen.2007.10.008

    Article  CAS  Google Scholar 

  31. Sonnino, S., Prinetti, A.: Gangliosides as regulators of cell membrane organization and functions. Adv. Exp. Med. Biol. 688, 165–184 (2010). https://doi.org/10.1007/978-1-4419-6741-1_12

    Article  CAS  PubMed  Google Scholar 

  32. Itokazu, Y., Tsai, Y.T., Yu, R.K.: Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj. J. 34(6), 749–756 (2017). https://doi.org/10.1007/s10719-016-9719-6

    Article  CAS  PubMed  Google Scholar 

  33. Li, Y., Seto, E.: HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb Perspect Med. pii: a026831 (2016). https://doi.org/10.1101/cshperspect.a026831

  34. Lam, K., Pan, K., Linnekamp, J.F., Medema, J.P., Kandimalla, R.: DNA methylation based biomarkers in colorectal cancer: a systematic review. Biochim. Biophys. Acta. 1866, 106–120 (2016)

    CAS  PubMed  Google Scholar 

  35. Morera, L., Lübbert, M., Jung, M.: Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics. 8, 57 (2016). https://doi.org/10.1186/s13148-016-0223-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baglietto, L., Ponzi, E., Haycock, P., Hodge, A., Assumma, M.B., Jung, C.H., Chung, J., Fasanelli, F., Guida, F., Campanella, G., Chadeau-Hyam, M., Grankvist, K., Johansson, M., Ala, U., Provero, P., Wong, E.M., Joo, J., English, D.R., Kazmi, N., Lund, E., Faltus, C., Kaaks, R., Risch, A., Barrdahl, M., Sandanger, T., Southey, M.C., Giles, G.G., Johansson, M., Vineis, P., Polidoro, S., Relton, C.L., Severi, G.: DNA methylation changes measured inpre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk. Int. J. Cancer. 140(1), 50–61 (2017). https://doi.org/10.1002/ijc.30431

    Article  CAS  PubMed  Google Scholar 

  37. Brien, G.L., Valerio, D.G., Armstrong, S.A.: Exploiting the Epigenome to Control Cancer-Promoting gene-expression programs. Cancer Cell. 29, 464–476 (2016). https://doi.org/10.1016/j.ccell.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hussain, S., Tulsyan, S., Dar, S.A., Sisodiya, S., Abiha, U., Kumar, R., Mishra, B.N., Haque, S.: Role of epigenetics in carcinogenesis: recent advancements in anticancer therapy. Semin Cancer Biol. 83, 441–451 (2022). https://doi.org/10.1016/j.semcancer.2021.06.023

    Article  CAS  PubMed  Google Scholar 

  39. Dohi, T., Ohta, S., Hanai, N., Yamaguchi, K., Oshima, M.: Sialylpentaosyl-ceramide detected with anti-GM2 monoclonal antibody. Structural characterization and complementary expression with GM2 in gastric cancer and normal gastric mucosa. J. Biol. Chem. 265, 7880–7885 (1990)

    Article  CAS  PubMed  Google Scholar 

  40. Kawamura, I.Y., Toyota, M., Kawashima, R., Hagiwara, T., Suzuki, H., Imai, K., Shinomura, Y., Tokino, T., Kannagi, R., Dohi, T.: DNA hypermethylation contributes to incomplete synthesis of carbohydrate determinants in gastrointestinal cancer. Gastroenterology. 135(1), 142–151e3 (2008). https://doi.org/10.1053/j.gastro.2008.03.031

    Article  CAS  PubMed  Google Scholar 

  41. Kizuka, Y., Kitazume, S., Yoshida, M., Taniguchi, N.: Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. J. Biol. Chem. 286, 31875–31884 (2011). https://doi.org/10.1074/jbc.M111.251173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bouvier, J.D., Seyfried, T.N.: Ganglioside composition of normal and mutant mouse embryos. J. Neurochem. 52, 460–466 (1989). https://doi.org/10.1111/j.1471-4159.1989.tb09143.x

    Article  CAS  PubMed  Google Scholar 

  43. Ngamukote, S., Yanagisawa, M., Ariga, T., Ando, S., Yu, R.K.: Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J. Neurochem. 103, 2327–2341 (2007). https://doi.org/10.1111/j.1471-4159.2007.04910.x

    Article  CAS  PubMed  Google Scholar 

  44. Suzuki, Y., Yanagisawa, M., Ariga, T., Yu, R.K.: Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J. Neurochem. 116, 874–880 (2011). https://doi.org/10.1111/j.1471-4159.2010.07042.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsai, Y.T., Yu, R.K.: Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J. Neurochem. 128, 101–110 (2014). https://doi.org/10.1111/jnc.12456

    Article  CAS  PubMed  Google Scholar 

  46. Oblinger, J.L., Pearl, D.K., Boardman, C.L., Saqr, H., Prior, T.W., Scheithauer, B.W., Jenkins, R.B., Burger, P.C., Yates, A.J.: Diagnostic and prognostic value of glycosyltransferase mRNA in glioblastoma multiforme patients. Neuropathol. Appl. Neurobiol. 32, 410–418 (2006). https://doi.org/10.1111/j.1365-2990.2006.00742.x

    Article  CAS  PubMed  Google Scholar 

  47. Eto, Y., Shinoda, S.: Gangliosides and neutral glycosphingolipids in human brain tumors: specificity and their significance. Adv. Exp. Med. Biol. 152, 279–290 (1982)

    CAS  PubMed  Google Scholar 

  48. Nakamura, O., Ishihara, E., Iwamori, M., Nagai, T., Matsutani, M., Nomura, K., Takakura, K.: Lipid composition of human malignant brain tumors. Brain and Nerve. 39, 221–226 (1987)

    CAS  PubMed  Google Scholar 

  49. Traylor, T.D., Hogan, E.L.: Gangliosides of human cerebral astrocytomas. J. Neurochem. 34, 126–131 (1980). https://doi.org/10.1111/j.1471-4159.1980.tb04630.x

    Article  CAS  PubMed  Google Scholar 

  50. Bernhard, H., Meyer, K.H., Dippold, W.G.: Ganglioside GD3 shedding by human malignant melanoma cells. Int J Cancer. 44, 155–160 (1989). https://doi.org/10.1002/ijc.2910440127

  51. Ladisch, S., Wu, Z.L., Feig, S., Ulsh, L., Schwartz, E., Floutsis, G., Wiley, F., Lenarsky, C., Seeger, R.: Shedding of GD2 ganglioside by human neuroblastoma. Int. J. Cancer. 39, 73–76 (1987). https://doi.org/10.1002/ijc.2910390113

    Article  CAS  PubMed  Google Scholar 

  52. Ohkawa, Y., Momota, H., Kato, A., Hashimoto, N., Tsuda, Y., Kotani, N., Honke, K., Suzumura, A., Furukawa, K., Ohmi, Y., Natsume, A., Wakabayashi, T., Furukawa, K.: Ganglioside GD3 enhances invasiveness of gliomas by forming a complex with platelet-derived growth factor receptor α and yes kinase. J. Biol. Chem. 290, 16043–16058 (2015). https://doi.org/10.1074/jbc.M114.635755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Okada, M., Furukawa, K., Yamashiro, S., Yamada, Y., Haraguchi, M., Horibe, K., Kato, K., Tsuji, Y., Furukawa, K.: High expression of ganglioside alpha-2,8-sialyltransferase (GD3 synthase) gene in adult T-cell leukemia cells unrelated to the gene expression of human T-lymphotropic virus type I. Cancer Res. 56, 2844–2848 (1996)

    CAS  PubMed  Google Scholar 

  54. Ohkawa, Y., Zhang, P., Momota, H., Kato, A., Hashimoto, N., Ohmi, Y., Bhuiyan, R.H., Natsume, A., Wakabayashi, T., Furukawa, K., Furukawa, K.: Lack of GD3 synthase (St8sia1) attenuates malignant properties of gliomas in genetically engineered mouse model. Cancer Sci. 112, 3756–3768 (2021). https://doi.org/10.1111/cas.15032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, P., Ohkawa, Y., Yamamoto, S., Momota, H., Kato, A., Kaneko, K., Natsume, A., Farhana, Y., Ohmi, Y., Okajima, T., Bhuiyan, R.H., Wakabayashi, T., Furukawa, K., Furukawa, K.: St8sia1-deficiency in mice alters tumor environments of gliomas, leading to reduced disease severity. Nagoya J. Med. Sci. 83, 535–549 (2021). https://doi.org/10.18999/nagjms.83.3.535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yesmin, F., Bhuiyan, R.H., Ohmi, Y., Yamamoto, S., Kaneko, K., Ohkawa, Y., Zhang, P., Hamamura, K., Cheung, N.V., Kotani, N., Honke, K., Okajima, T., Kambe, M., Tajima, O., Furukawa, K., Furukawa, K.: Ganglioside GD2 enhances the malignant phenotypes of Melanoma cells by cooperating with integrins. Int. J. Mol. Sci. 23, 423 (2021). https://doi.org/10.3390/ijms23010423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yeh, S.C., Wang, P.Y., Lou, Y.W., Khoo, K.H., Hsiao, M., Hsu, T.L., Wong, C.H.: Glycolipid GD3 and GD3 synthase are key drivers for glioblastoma stem cells and tumorigenicity. Proc. Natl. Acad. Sci. USA. 113, 5592–5597 (2016). https://doi.org/10.1073/pnas.1604721113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Battula, V.L., Shi, Y., Evans, K.W., Wang, R.Y., Spaeth, E.L., Jacamo, R.O., Guerra, R., Sahin, A.A., Marini, F.C., Hortobagyi, G., Mani, S.A., Andreeff, M.: Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J. Clin. Invest. 122(6), 2066–2078 (2012). https://doi.org/10.1172/JCI59735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Kojima for secretarial assistance. We also thank Y. Nakayasu and T. Mizuno for technical assistance.

Funding

This work was supported by Grants-in-aids from the Ministry of Education, Culture, Sports, and Technology of Japan (MEXT, KAKENHI) (19K22518, 19K07393, 21K26828) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: KH KoF KeF. Performed the experiments: YY KH KeF. Analyzed the data: YY HS KoF KeF. Contributed reagents/materials/analysis tools: YukO KH YuhO KK HS. Wrote the paper: KoF KeF.

Corresponding author

Correspondence to Koichi Furukawa.

Ethics declarations

Conflict of Interest

We have no conflict of interest to be declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Y., Higashimoto, K., Ohkawa, Y. et al. Possible regulation of ganglioside GD3 synthase gene expression with DNA methylation in human glioma cells. Glycoconj J 40, 323–332 (2023). https://doi.org/10.1007/s10719-023-10108-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10108-9

Keywords

Navigation