Skip to main content
Log in

Surface Engineering of Tribomaterials with Concentrated Beams of Charged Particles: State-of-Art Approaches and Prospects

  • Published:
Journal of Friction and Wear Aims and scope Submit manuscript

Abstract

The solution of a broad range of research and applied problems of surface engineering of machine-building materials is currently one of the priorities of developing physical material science. This work considers the current state of the research and developments in surface engineering of tribomaterials with beams of charged particles and plasma flows. The main focus is on ion beam processing, vacuum arc deposition, magnetron sputtering, and hybrid ion beam-assisted deposition technologies. The physical basics of the enumerated surface engineering methods are briefly considered, their comparative analysis is made, and their most topical applications and development prospects are determined. A huge amount of empirical material has been accumulated both in the field of process methods of treatment surface engineering and in the materials science of thin surface layers. At the same time, there is a dramatic lack of fundamental ideas in understanding the physicochemical mechanisms responsible for modifications in surface structure and properties, which inevitably leads to the fragmentation of the efforts on the part of researchers and developers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Byeli, A.V., Karpenko, G.D., and Myshkin, N.K., Struktura i metody formirovaniya iznosostoikikh poverkhnostnykh sloev (Structure and Methods of Formation of Wear-Resistant Surface Layers), Moscow: Mashinostroenie, 1991.

  2. Alekhin, V.P., Fizika prochnosti i plastichnosti poverkhnostnykh sloev materialov (Physics of Strength and Plasticity of Surface Layers of Materials), Moscow: Nauka, 1983.

  3. Zharin, A.L., Scanning Probe Microscopy in Nanoscale and Nanotechnology, Bharat Bhushan, Ed., Dordrecht: Springer, 2010.

  4. Rigney, D.F., Some thoughts on sliding wear, Wear, 1992, vol. 152, pp. 187–192.

    Article  Google Scholar 

  5. Tribology in the USA and the Former Soviet Union: Studies and Applications, Belyi, V.A., Ludema, K.C., and Myshkin, N.K., Eds., New York: Allerton Press, 1994.

    Google Scholar 

  6. Panin, V.E., Physical mesomechanics of surface layers of solids, Fiz. Mezomekh., 1999, vol. 2, no. 6, pp. 5–23.

    Google Scholar 

  7. Sánchez-López, J.C. and Fernández, A., Doping and alloying effects on DLC coatings, in Tribology of Diamond-Like Carbon Films: Fundamentals and Applications, Donnet, C. and Erdemir, A., Eds., New York: Springer, 2008, pp. 311–338.

    Google Scholar 

  8. Zharin, A.L., Metod kontaktnoi raznosti potentsialov i ego primenenie v tribologii (Method of Contact Potential Difference and its Application in Tribology), Minsk: Bestprint, 1996.

  9. Gehlen, P.C., Beeler, J.R., Jr., and Jaffee, R.I., Interatomic Potentials and Simulation of Lattice Deffects, New York, 1972.

    Book  Google Scholar 

  10. Averbach, R.S. and Chaly, M., Nucl. Instrum. Methods Phys. Res., Sect. B, 1994, vol. 90, p. 191.

    Google Scholar 

  11. Sasajima, Y., Suzuki, K., Ozawa, S., and Yamanoto, R., Mol. Simul., 1991, no. 6, p. 333.

  12. Fedotov, S.A., Efimchik, A.A., and Byeli, A.V., Diamond Rel. Mater., 1997, no. 6, pp. 1638–1645.

  13. Byeli, A.V. and Fedotov, S.A., Surf. Eng., 1994, no. 10, pp. 136–144.

  14. Biersack, J.P., Kruger, W., and Stuller, R.L., Rad. Eff. Lett., 1985, vol. 85, pp. 193–201.

    Article  ADS  Google Scholar 

  15. Thorton, J.A. and Hoffman, D.W., J. Vac. Sci. Technol. A, 1985, no. 3, p. 76.

  16. Byeli, A.V., Karpovich, A.N., Zharin, A.L., and Tyavlovskij, A.K., Electron work function and physical and mechanical properties of chromium-containing ion-alloyed steels, Vesc. NAN Belarusi, Ser. Fiz.-Tekh. Navuk, 2016, no. 1, pp. 21–27.

  17. Belyi, A.V., Kalinichenko, A.S., Devoino, O.G., and Kukareko, V.A., Inzheneriya poverkhnostei konstruktsionnykh materialov s ispol’zovaniem plazmennykh i puchkovykh tekhnologii (Surface Engineering of Structural Materials Using Plasma and Beam Technologies), Minsk: Belar. Navuka, 2017.

  18. Kolubaev, A.V., Belyi, A.V., Buyanovskii, I.A., et al., Structure, deformation, and fracture of hard coatings during sliding friction, Russ. Phys. J., 2019, vol. 62, no. 8, pp. 1363–1397.

    Article  Google Scholar 

  19. Komarov, F.F., Ionnaya implantatsiya v metally (Ion Implantation in Metals), Moscow, 1991.

    Google Scholar 

  20. Burenkov, A.F., Komarov, F.F., and Fedotov, S.A., Nucl. Instrum. Methods Phys. Res., Sect. B, 1992, vol. 67, p. 35

    Google Scholar 

  21. Shakreev, Yu., Kozlov, E.V., Didenko, A.N., et al., Surf. Coat. Technol., 1996, vol. 83, p. 15.

    Article  Google Scholar 

  22. Komarov, F.F., Konstantinov, S.V., and Pogrebnyak, F.D., Influence of high-fluence ion irradiation on the structure and mechanical properties of coatings from nanostructured nitrides of high-entropy alloys (Ti, Hf, Zr, V, Nb), Dokl. NAN Belarusi, 2015, vol. 59, pp. 24–30.

    Google Scholar 

  23. Wilbur, P.J. and Buchholtz, B.W., Surf. Coat. Technol., 1996, vol. 79, pp. 1–8.

    Article  Google Scholar 

  24. Belotserkovskii, M.A., Tekhnologii aktivirovannogo gazoplamennogo napyleniya antifriktsionnykh pokrytii (Technologies of Activated Flame Spraying of Antifriction Coatings), Minsk: Tekhnoprint, 2004.

  25. Grigorchik, A.N., Kukareko, V.A., Belyi, A.V., et al., The regularities of nitrogen diffusion during the ion-beam nitriding process of austenitic thermal-sprayed coating, Mekh. Mash., Mekhanizm. Mater., 2016, no. 2, pp. 75–80.

  26. Grigorchik, A.N., Special aspects of diffusional transfer of the alloying admixture during ion nitriding of the thermal-sprayed coatings, Mekh. Mash., Mekhanizm. Mater., 2016, no. 1 (34), pp. 75–80.

  27. Ovcharenko, V.E., Mohovikov, A.A., Ivanov, K.V., Solonenko, O.P., Ulianitsky, V.U., Bao, H.Yu., and Zhang, H., Wear resistance of the surface layers of hard alloys with a multilevel structural phase state, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech., 2016, vol. 10, no. 4, pp. 712–717.

    Article  Google Scholar 

  28. Belyi, A.V., Ovcharenko, V.E., Ivanov, Yu.F., Ivanov, K.V., Mokhovikov, A.A., Baohai Yu., and Karpovich, A.N., Electron-ion-plasma modification and hardening of surface layers of hard alloys, in Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov, sb. nauchnyh trudov, Vol. 2: Tekhnologii i oborudovanie mekhanicheskoi i fiziko-tekhnicheskoi obrabotki (Modern Methods and Technologies for the Creation and Processing of Materials, Collection of Articles, Vol. 2: Technologies and Equipment for Mechanical and Physical-Technical Processing), Minsk: FTI NAN Belarusi, 2016, pp. 201–207.

  29. Panin, V.E., Byeli, A.V., and Koluaev, A.V., Mechanics of plastic deformation and fracture of surface-hardened solids in friction, Fiz. Mezomekh., 2002, no. 1, pp. 15–28.

  30. Ovcharenko, V.E., Ivanov, K.V., Mohovikov, A.A., et al., J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech., 2016, vol. 10, no. 4, pp. 712–717.

    Article  Google Scholar 

  31. Psakhie, S.G., Ovcharenko, V.E., and Byeli, A.V., J. Mater. Sci. Technol., 2013, no. 11, pp. 1036–1044.

  32. Gorel'chik, A.N., Chekan, N.M., Akula, I.P., et al., Influence of ion-beam nitriding of Kh12M steel on adhesion and mechanical properties of chromium nitride coating, in Sovremennye metody i tekhnologii sozdaniya i obrabotki materialov: sb. nauchnyh trudov, Kn. 1: Novye tekhnologii i materialy (Modern Methods and Technologies for the Creation and Processing of Materials, Collection of Articles, Vol. 1: New Technologies and Materials), Minsk: FTI NAN Belarusi, 2021, pp. 235–249.

  33. Latushkina, S.D. and Posylkina, O.I., Peculiarities of structure formation and protective properties of multicomponent coatings deposited from vacuum-arc discharge plasma, in Aktual’nye problemy prochnosti (Actual Problems of Strength), Vitebsk: VGTU, 2018, no. 1, chap. 4, pp. 63–85.

  34. Zlockij, S.V., Structure and mechanical properties of titanium-chromium nitride gradient coatings obtained by vacuum arc deposition, Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation, Minsk, 2016.

  35. Barkovskaya, M.M., Structure and properties of coatings formed by vacuum arc deposition with combination of titanium and chromium flows in nitrogen, Extended Abstract of Cand. Sci. (Phys. Math.) Dissertation, Minsk, 2016.

  36. Yurov, V.M., Guchenko, S.A., and Mahanov, K.M., Structural properties of high entropy coating TiNiZrCuCr, Sovrem. Naukoemk. Tekhnol., 2020, no. 4-1, pp. 78–83.

  37. Murty, B.S., Yeh, J.-W., and Ranganathan, S., High Entropy Alloys, London: Butterworth-Heinemann, 2014.

    Google Scholar 

  38. Chen, T.K., Wong, M.S., Shun, T.T., and Yeh, J.W., Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering, Surf. Coat. Technol., 2005, vol. 200, nos. 5—6, pp. 1361–1365.

    Article  Google Scholar 

  39. Firstov, S.A., Andreev, A.A., Gorban’, V.F., Danilenko, N.I., Krapivka, N.A., and Stolbovoi, V.A., A new class of superhard nitride coatings based on multicomponent high-entropy alloys, Sb. tr. Mezhdunarodnoi konferentsii Nanotekhnologii funktsional’nykh materialov (Proceedings of the International Conference on Nanotechnologies of Functional Materials, St. Petersburg, June 27—29, 2012), 2012, pp. 572–577.

  40. Chang, Sh.-Yi., Lin, Sh.-Y., Huang, Yi-Ch., and Wu, Ch.-L., Mechanical properties deformation behaviors and interface adhesion of (AlCeTaTiZr)Nx multi-component coatings, Surf. Coat. Technol., 2010, vol. 204, no. 20, pp. 3307–3314.

    Article  Google Scholar 

  41. Tsai, D.-Ch., Shieu, F.-Sh., Chang, Sh.-Y., Yao, H.-Ch. and Deng, M.-J., Structures and characterizations of TiVCr and TiVCrZrY films deposited by magnetron sputtering under different bias powers, J. Electrochem. Soc., 2010, vol. 157, no. 3, pp. K52–K58.

    Article  Google Scholar 

  42. Lai, Ch.-H., Lin, S.-J., Yen, L.-W., and Chang, Sh.-Y., Preparation and characterization of AlCrTaTiZr multi-element nitride coatings, Surf. Coat. Technol., 2006, vol. 201, no. 6, pp. 3275–3285.

    Article  Google Scholar 

  43. Latushkina, S., Kuis, D., Posylkina, O., Kasperovich, A., and Panin, E., Synthesis of Al–Ti–Fe–Cr–Ni–N coatings by the method of vacuum-arc deposition from a separated vacuum flow, Mater. Lett., 2021, vol. 303.

  44. Lotkov, A., Latushkina, S., Kopylov, V., et al., Nanostructured coatings (Ti,Zr)N as a barrier to hydrogen diffusion into TiO.Pd (wt %) alloys, Metals, 2021, no. 11, pp. 1332–1337.

  45. Wang, H.T., Xu, Y.X., and Chen, L., Optimization of Cr–Al–N coating by multilayer architecture with TiSiN insertion layer, J. Alloys Compd., 2017, vol. 728, pp. 952–958.

    Article  Google Scholar 

  46. Barshilia, H.C., Prakash, M.S., Jain, A., and Rajam, K.S., Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films, Vacuum, 2005, vol. 77, no. 2, pp. 169—179.

    Article  ADS  Google Scholar 

  47. Lomello, F., Arab Pour Yazdi, M., Sanchette, P., Schuster, F., Tabarant, M., and Billard, A., Temperature dependence of the residual stresses and mechanical properties in TiN/CrN nanolayered coating processed by cathodic arc deposition, Surf. Coat. Technol., 2014, vol. 238, pp. 216–222.

    Article  Google Scholar 

  48. Kolubaev, A.V., Sizova, O.V., Denisova, Yu.A., et al., Structure and properties of CrN/TiN multilayer coatings deposited by vacuum arc plasma evaporation on copper and beryllium-copper alloy, Fiz. Mezomekh., 2022, no. 2, pp. 35–46.

  49. Metody i sredstva uprochneniya poverkhnostei detalei mashin kontsentrirovannymi potokami energii (Methods and Means of Hardening the Surfaces of Machine Parts with Concentrated Energy Flows), Gusenkov, A.P., Ed., Moscow: Nauka, 1992.

    Google Scholar 

  50. Grigor’ev, S.N. and Voronin, N.A., Tekhnologiya vakuumno-plazmennoi obrabotki instrumenta i detalei mashin (Technology of Vacuum-Plasma Processing of Tools and Machine Parts), Moscow: MGTU STANKIN, 2006.

  51. Hrushchov, M.M., in Sovremennye tekhnologii modifitsirovaniya poverkhnostei detalei mashin (Modern Technologies for Modifying the Surfaces of Machine Parts), Moskvitin, G.V., Ed., Moscow: URSS/LENAND, 2013, pp. 78–113.

  52. Klages, C.P. and Memming, R., Mater. Sci. Forum, 1990, vols. 52—53, pp. 609–644.

    Google Scholar 

  53. Jansson, U. and Lewin, E., Thin Solid Films, 2013, vol. 536, pp. 1–24.

    Article  ADS  Google Scholar 

  54. Tribology of Diamond-Like Films. Fundamentals and Applications, Donnet, C. and Erdemir, A., Eds., New York: Springer, 2008.

    Google Scholar 

  55. Manish, R., Saha, A., and Valleti, K., Microstructure and wear of cathodic arc physical vapour deposited on TiAlN, n-CrN and n-TiAlN/α-Si3N4 films, Defence Sci. J., 2020, vol. 70, no. 6, pp. 656–663.

    Article  Google Scholar 

  56. Kablov, E.N., Muboyadzhyan, S.A., Budinovskij, S.A., and Lucenko, A.N., Ion-plasma protective coatings for gas-turbine engine blades, Russ. Metall. (Metally), 2007, vol. 2007, no. 5, pp. 364–372.

    Article  ADS  Google Scholar 

  57. Budinovskii, S.A., Muboyadzhyan, S.A., Gayamov, A.M., and Stepanova, S.V., Ion-plasma heat-resistant coatings with composite barrier layer for protecting alloy ZhS36VI from oxidation, MiTOM, 2011, no. 1, pp. 34–40.

  58. Kelly, P.J. and Arnell, R.D., Vacuum, 2000, no. 56, p. 159.

  59. Golosov, D.A., Svadkovskii, I.V., and Zavadskii, S.M., Ion-assisted magnetron sputtering, Elektron. Obrab. Mater., 2002, no. 6, p. 66.

  60. Svadkovski, I.V., Dostanko, À.P., Golosov, D.A., and Zavatskiy, S.Ì., in Proceedings of the 3rd International Conference on Plasma Physics and Plasma Technology, Minsk, Belarus, 2000, no. 2, p. 716.

  61. Svadkovski, I.V., Golosov, D.A., and Zavatskiy, S.M., in Proceedings of the NEET’ 2001 2nd International Symposium, 2001, Kazimierz Dolny, Poland, 2001, p. 217.

  62. Golosov, D.A., Svadkovski, I.V., and Zavadski, S.M., in Proceedings of the 6th International Conference on Modification of Materials with Particle Beams and Plasma Flow, Tomsk, Russia, 2002, p. 148.

  63. Svadkovski, I.V., Golosov, D.A., and Zavatskiy, S., Vacuum, 2002, no. 68, p. 283.

  64. Golosov, D.A., Svadkovskii, I.V., and Zavadskii, S.M., Ion-assisted magnetron sputtering, in 7-ya mezhdunarodnaya konferentsiya Vzaimodeistvie izluchenii s tverdym telom (Proceedings of the 7th International Conference on Interaction of Radiation with Solids, Sept. 26–28, 2007, Minsk, Belarus), Minsk, 2007, pp. 356–359.

  65. Schelkanov, I.A., High-current pulsed magnetron discharge with plasma auto-acceleration, Cand. Sci. (Phys. Math.) Dissertation, Moscow: Mosc. Eng. Phys. Inst., 2011.

  66. Belyi, A.V., Poverhnost’. Fiz., Khim., Mekh., 1989, no. 10, pp. 128–135.

  67. Belyi, A.V., Colligon, J., and Kheyrandish, H., Thin Solid Films, 1991, vol. 200, pp. 283–291.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Byeli.

Additional information

Translated by S. Kuznetsov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byeli, A.V. Surface Engineering of Tribomaterials with Concentrated Beams of Charged Particles: State-of-Art Approaches and Prospects. J. Frict. Wear 43, 359–369 (2022). https://doi.org/10.3103/S1068366622060022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068366622060022

Keywords:

Navigation