Skip to main content
Log in

Synthesis and biological activity of ganglioside GM3 analogues with a (S)-CHF-Sialoside linkage and an alkyne tag

  • Research Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The alkyne tag, consisting of only two carbons, is widely used as a bioorthogonal functional group due to its compactness and nonpolar structure, and various probes consisting of lipids bearing an alkyne tag have been developed. Here, we designed and synthesized analogues of ganglioside GM3 bearing an alkyne tag in the fatty acid moiety and evaluated the effect of the alkyne tag on the biological activity. To eliminate the influence of other factors such as degradation of the glycan chain when evaluating biological activity in a cellular environment, we introduced the tag into sialidase-resistant (S)-CHF-linked GM3 analogues developed by our group. The designed analogues were efficiently synthesized by tuning the protecting group of the glucosylsphingosine acceptor. The growth-promoting effect of these analogues on Had-1 cells was dramatically altered depending upon the position of the alkyne tag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3

Similar content being viewed by others

Availability of data and materials

The data underlying this study are available in the published article and its supplementary information files.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kates, M.: Glycolipids, Phosphoglycolipids, and Sulfoglycolipids. Springer Science & Business Media (2013)

  2. Kim, C.-H.: Ganglioside Biochemistry. Springer Nature (2020)

  3. Simons, K.: The biology of lipids trafficking, regulation, and function : a subject collection from Cold Spring Harbor perspectives in biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y (2011)

    Google Scholar 

  4. Inokuchi, J.-I., Inamori, K.-I., Kabayama, K., Nagafuku, M., Uemura, S., Go, S., Suzuki, A., Ohno, I., Kanoh, H., Shishido, F.: Biology of GM3 Ganglioside. Prog. Mol. Biol. Transl. Sci. 156, 151–195 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki, K.G.N., Ando, H., Komura, N., Fujiwara, T., Kiso, M., Kusumi, A.: Unraveling of Lipid Raft Organization in Cell Plasma Membranes by Single-Molecule Imaging of Ganglioside Probes. Adv. Exp. Med. Biol. 1104, 41–58 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. Wang, W.X., Whitehead, S.N.: Imaging mass spectrometry allows for neuroanatomic-specific detection of gangliosides in the healthy and diseased brain. Analyst. 145, 2473–2481 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Chigorno, V., Pitto, M., Cardace, G., Acquotti, D., Kirschner, G., Sonnino, S., Ghidoni, R., Tettamanti, G.: Association of gangliosides to fibroblasts in culture: A study performed with GM1 [14C]-labelled at the sialic acid acetyl group. Glycoconj. J. 2, 279–291 (1985)

    Article  CAS  Google Scholar 

  8. Sonnino, S., Chigorno, V., Valsecchi, M., Pitto, M., Tettamanti, G.: Specific ganglioside-cell protein interactions: A study performed with GM1 ganglioside derivative containing photoactivable azide and rat cerebellar granule cells in culture. Neurochem. Int. 20, 315–321 (1992)

    Article  CAS  PubMed  Google Scholar 

  9. Shapiro, R.E., Specht, C.D., Collins, B.E., Woods, A.S., Cotter, R.J., Schnaar, R.L.: Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J. Biol. Chem. 272, 30380–30386 (1997)

    Article  CAS  PubMed  Google Scholar 

  10. Mauri, L., Prioni, S., Loberto, N., Chigorno, V., Prinetti, A., Sonnino, S.: Synthesis of radioactive and photoactivable ganglioside derivatives for the study of ganglioside-protein interactions. Glycoconj. J. 20, 11–23 (2004)

    Article  CAS  PubMed  Google Scholar 

  11. Wendeler, M., Hoernschemeyer, J., Hoffmann, D., Kolter, T., Schwarzmann, G., Sandhoff, K.: Photoaffinity labelling of the human GM2-activator protein. Mechanistic insight into ganglioside GM2 degradation. Eur. J. Biochem. 271, 614–627 (2004)

  12. Prioni, S., Mauri, L., Loberto, N., Casellato, R., Chigorno, V., Karagogeos, D., Prinetti, A., Sonnino, S.: Interactions between gangliosides and proteins in the exoplasmic leaflet of neuronal plasma membranes: a study performed with a tritium-labeled GM1 derivative containing a photoactivable group linked to the oligosaccharide chain. Glycoconj. J. 21, 461–470 (2004)

    Article  CAS  PubMed  Google Scholar 

  13. Kabayama, K., Sato, T., Saito, K., Loberto, N., Prinetti, A., Sonnino, S., Kinjo, M., Igarashi, Y., Inokuchi, J.-I.: Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Natl. Acad. Sci. 104, 13678–13683 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kholodenko, I.V., Kholodenko, R.V., Vodovozova, E.L., Oleinikov, V.A., Polyakov, N.B., Molotkovskaya, I.M., Petrov, R.V.: Ganglioside GM1-binding sites in interleukin-4: a photoaffinity labeling study. Dokl. Biochem. Biophys. 418, 31–35 (2008)

    Article  CAS  PubMed  Google Scholar 

  15. Vodovozova, E.L.: Photoaffinity labeling and its application in structural biology. Biochemistry 72, 1–20 (2007)

    CAS  PubMed  Google Scholar 

  16. Schnaar, R.L.: The Biology of Gangliosides. Adv. Carbohydr. Chem. Biochem. 76, 113–148 (2019)

    Article  PubMed  Google Scholar 

  17. Komura, N., Suzuki, K.G.N., Ando, H., Konishi, M., Koikeda, M., Imamura, A., Chadda, R., Fujiwara, T.K., Tsuboi, H., Sheng, R., Cho, W., Furukawa, K., Furukawa, K., Yamauchi, Y., Ishida, H., Kusumi, A., Kiso, M.: Raft-based interactions of gangliosides with a GPI-anchored receptor. Nat. Chem. Biol. 12, 402–410 (2016)

    Article  CAS  PubMed  Google Scholar 

  18. Monti, E., Miyagi, T.: Structure and function of mammalian sialidases. Top. Curr. Chem. 366, 183–208 (2015)

    Article  CAS  PubMed  Google Scholar 

  19. Hirai, G., Kato, M., Koshino, H., Nishizawa, E., Oonuma, K., Ota, E., Watanabe, T., Hashizume, D., Tamura, Y., Okada, M., Miyagi, T., Sodeoka, M.: Ganglioside GM3 Analogues Containing Monofluoromethylene-Linked Sialoside: Synthesis, Stereochemical Effects, Conformational Behavior, and Biological Activities. JACS Au. 1, 137–146 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. Hirai, G.: Chapter Three - Pseudo-glycoconjugates with a C-glycoside linkage. In: Baker, D.C. (ed.) Advances in Carbohydrate Chemistry and Biochemistry. pp. 35–77. Academic Press (2022)

  21. Thirumurugan, P., Matosiuk, D., Jozwiak, K.: Click Chemistry for Drug Development and Diverse Chemical-Biology Applications. Chem. Rev. 113, 4905–4979 (2013)

    Article  CAS  PubMed  Google Scholar 

  22. Jewett, J.C., Bertozzi, C.R.: Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 39, 1272–1279 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Milne, S.B., Tallman, K.A., Serwa, R., Rouzer, C.A., Armstrong, M.D., Marnett, L.J., Lukehart, C.M., Porter, N.A., Brown, H.A.: Capture and release of alkyne-derivatized glycerophospholipids using cobalt chemistry. Nat. Chem. Biol. 6, 205–207 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tallman, K.A., Armstrong, M.D., Milne, S.B., Marnett, L.J., Alex Brown, H., Porter, N.A.: Cobalt carbonyl complexes as probes for alkyne-tagged lipids [S]. J. Lipid Res. 54, 859–868 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haberkant, P., Raijmakers, R., Wildwater, M., Sachsenheimer, T., Brügger, B., Maeda, K., Houweling, M., Gavin, A.-C., Schultz, C., van Meer, G., Heck, A.J.R., Holthuis, J.C.M.: In vivo profiling and visualization of cellular protein-lipid interactions using bifunctional fatty acids. Angew. Chem. Int. Ed Engl. 52, 4033–4038 (2013)

    Article  CAS  PubMed  Google Scholar 

  26. Peng, T., Hang, H.C.: Bifunctional Fatty Acid Chemical Reporter for Analyzing S-Palmitoylated Membrane Protein-Protein Interactions in Mammalian Cells. J. Am. Chem. Soc. 137, 556–559 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, X., Dong, T., Zhou, Y., Huang, N., Lei, X.: Exploring the Binding Proteins of Glycolipids with Bifunctional Chemical Probes. Angew. Chem. Int. Ed Engl. 55, 14330–14334 (2016)

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Z., Paley, D.W., Wei, L., Weisman, A.L., Friesner, R.A., Nuckolls, C., Min, W.: Multicolor live-cell chemical imaging by isotopically edited alkyne vibrational palette. J. Am. Chem. Soc. 136, 8027–8033 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bakthavatsalam, S., Dodo, K., Sodeoka, M.: A decade of alkyne-tag Raman imaging (ATRI): applications in biological systems. RSC Chem Biol. 2, 1415–1429 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsumori, N., Yasuda, T., Okazaki, H., Suzuki, T., Yamaguchi, T., Tsuchikawa, H., Doi, M., Oishi, T., Murata, M.: Comprehensive molecular motion capture for sphingomyelin by site-specific deuterium labeling. Biochemistry 51, 8363–8370 (2012)

    Article  CAS  PubMed  Google Scholar 

  31. Tsuchikawa, H., Monji, M., Umegawa, Y., Yasuda, T., Slotte, J.P., Murata, M.: Depth-Dependent Segmental Melting of the Sphingomyelin Alkyl Chain in Lipid Bilayers. Langmuir 38, 5515–5524 (2022)

    Article  CAS  PubMed  Google Scholar 

  32. Oikawa, Y., Tanaka, T., Horita, K., Yoshioka, T., Yonemitsu, O.: DMPM (3,4-dimethoxybenzyl) protecting group for hydroxy function more readily removable than MPM (P-methoxybenzyl) protecting group by DDQ oxidation. Tetrahedron Lett. 25, 5393–5396 (1984)

    Article  CAS  Google Scholar 

  33. Nakajima, N., Abe, R., Yonemitsu, O.: 3-Methoxybenzyl (3-MPM) and 3, 5-dimethoxybenzyl (3, 5-DMPM) protecting groups for the hydroxy function less readily removable than 4-methoxybenzyl (MPM) and 3, 4-dimethoxybenzyl (DMPM) protecting groups by DDQ oxidation. Chem. Pharm. Bull. 36, 4244–4247 (1988)

    Article  CAS  Google Scholar 

  34. Fukuyama, T., Laird, A.A., Hotchkiss, L.M.: p-Anisyl group: A versatile protecting group for primary alcohols. Tetrahedron Lett. 26, 6291–6292 (1985)

    Article  CAS  Google Scholar 

  35. Mori, M., Ito, Y., Ogawa, T.: A highly stereoselective and practical synthesis of cyclomannohexaose, cyclo{→4)-[α-D-Manp-(1→4)-]5-α-D-Manp-(1→}, a manno isomer of cyclomaltohexaose. Carbohydr. Res. 192, 131–146 (1989)

    Article  CAS  Google Scholar 

  36. Sun, J., Yu, B., Li, Y., Yang, W., Ma, Y., Shan, L., Zhang, W.-D.: Synthesis of Kaempferol 3-O-[2′′,3′′- and 2′′,4′′-Di-O-(E)-p-coumaroyl]-α-l-rhamnopyranosides. Synlett 2011, 915–918 (2011)

    Article  Google Scholar 

  37. Mende, M., Nieger, M., Bräse, S.: Chemical Synthesis of Modified Hyaluronic Acid Disaccharides. Chem. Eur. J. 23, 12283–12296 (2017)

    Article  CAS  PubMed  Google Scholar 

  38. Napolitano, E., Giannone, E., Fiaschi, R., Marsili, A.: Influence of Alkoxyalkyl Substituents in the Regioselective Lithiation of the Benzene Ring. J. Org. Chem. 48, 3653–3657 (1983)

    Article  CAS  Google Scholar 

  39. Pelter, A., Ward, R. S., Pritchard, M. C.: A Short Versatile Synthesis of Aryltetralin Lignans including Deoxyisopodophyllotoxin and Epi-isopodophyllotoxin. J. Chem. Soc., Perkin Trans 1. 1988, 1615–1623 (1988)

  40. Santra, A., Li, Y., Yu, H., Slack, T.J., Wang, P.G., Chen, X.: Highly efficient chemoenzymatic synthesis and facile purification of α-Gal pentasaccharyl ceramide Galα3nLc4βCer. Chem. Commun. 53, 8280–8283 (2017)

    Article  CAS  Google Scholar 

  41. Fügedi, P., Garegg, P.J.: A novel promoter for the efficient construction of 1,2-trans linkages in glycoside synthesis, using thioglycosides as glycosyl donors. Carbohydr. Res. 149, C9–C12 (1986)

    Article  Google Scholar 

  42. Andersson, F., Fúgedi, P., Garegg, P.J., Nashed, M.: Synthesis of 1,2-cis-linked glycosides using dimethyl(methylthio) sulfonium triplate as promoter and thioglycosides as glycosyl donors. Tetrahedron Lett. 27, 3919–3922 (1986)

    Article  CAS  Google Scholar 

  43. Yu, B.: Gold(I)-Catalyzed Glycosylation with Glycosyl o-Alkynylbenzoates as Donors. Acc. Chem. Res. 51, 507–516 (2018)

    Article  CAS  PubMed  Google Scholar 

  44. Zeng, Y., Wang, Z., Whitfield, D., Huang, X.: Installation of electron-donating protective groups, a strategy for glycosylating unreactive thioglycosyl acceptors using the preactivation-based glycosylation method. J. Org. Chem. 73, 7952–7962 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Crich, D.: En Route to the Transformation of Glycoscience: A Chemist’s Perspective on Internal and External Crossroads in Glycochemistry. J. Am. Chem. Soc. 143, 17–34 (2021)

    Article  CAS  PubMed  Google Scholar 

  46. Alper, P.B., Hendrix, M., Sears, P., Wong, C.-H.: Probing the specificity of Aminoglycoside−Ribosomal RNA interactions with designed synthetic analogs. J. Am. Chem. Soc. 120, 1965–1978 (1998)

    Article  CAS  Google Scholar 

  47. Hirai, G.: Sialidase-Resistant Ganglioside GM3 Analogues: Evaluation of Biological Activity. Glycolipids. pp. 79–87 Springer Nature (2023)

  48. Taki, T., Ogura, K., Rokukawa, C., Hara, T., Kawakita, M., Endo, T., Kobata, A., Handa, S.: Had-1, a uridine 5’-diphosphogalactose transport-defective mutant of mouse mammary tumor cell FM3A: composition of glycolipids, cell growth inhibition by lactosylceramide, and loss of tumorigenicity. Cancer Res. 51, 1701–1707 (1991)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Shigeru Nishiyama and Prof. Kazunobu Toshima (Keio University) for their kind support. We are also grateful for Prof. Yukishige Ito (RIKEN, Osaka University) for a generous gift of sialic acid.

Funding

This study was partially supported by PRIME, BINDS, and SCARDA from the Japan Agency for Medical Research and Development, AMED, the JSPS KAKENHI (grants No. 22K14683, 21K19053, and 21H02070), Asian Chemical Biology Initiative, Naito Foundation, Terumo Life Science Foundation, Leap Foundation, and RIKEN project funding.

Author information

Authors and Affiliations

Authors

Contributions

G.H. and M.S. conceived this research and designed the experiments; E.O., D.T., M.K., H.M., and M.Y. performed the synthetic studies; K.O. performed the cell experiments; E.O., D.T., M.K., H.M., M.Y., and G.H, analyzed the data and wrote Supporting Information; G.H. and M.S. wrote the original draft of the manuscript; all authors contributed to its reviewing and editing.

Corresponding authors

Correspondence to Mikiko Sodeoka or Go Hirai.

Ethics declarations

Ethical approval

This article does not contain any data derived from studies with human participants or animals.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 6737 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ota, E., Takeda, D., Oonuma, K. et al. Synthesis and biological activity of ganglioside GM3 analogues with a (S)-CHF-Sialoside linkage and an alkyne tag. Glycoconj J 40, 333–341 (2023). https://doi.org/10.1007/s10719-023-10111-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-023-10111-0

Keywords

Navigation