Skip to main content
Log in

Detection of Tularemia Agent DNA by Loop Mediated Isothermal Amplification

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Tularemia is a natural focal zoonotic infection that can cause epidemic manifestations of an emergency nature. The purpose of the study is to develop a method for detecting DNA strains of the tularemia pathogen Francisella tularensis by loop mediated isothermal amplification (LAMP). Primers for the selected targets were calculated using the on-line Primer Explorer 5 program and tested for the specificity using the BLAST program. The primers were synthesized by Synthol, Moscow. Isolation of DNA from vaccine and virulent strains of epidemically significant subspecies of the tularemia microbe, as well as pathogens of other infectious diseases, was performed using the commercial DNA-sorb-B kit (InterLabService, Russia). The amplification reaction was carried out at a temperature of 63°C for 60 min (without loop primers) or 30 min (with loop primers) with preliminary heating at a temperature of 92°C for 2 min on a Tertsik amplifier (DNA-Technology, Russia) in the presence of the thermostable SD polymerase. Sequences of the genes encoding acid phosphatase A (acpA), outer membrane protein (fopA), and a region of the iglC gene of the pathogenicity island were chosen as DNA targets for the detection of the tularemia pathogen. Of the two sets of outer, inner, and loop original primers synthesized for each selected marker gene, the sets acpFt101, fopFt132, and iglCFt1 reproducibly and specifically detected DNA of 100–1000 F. tularensis microbial cells. The opportunity to reduce the analysis time by half appeared due to the introduction of loop primers and visual detection of amplification products stained with the SYTO 82 intercalating dye without subsequent electrophoresis and visualization of the gel after staining with ethidium bromide. An easy-to-use test that does not require sophisticated equipment is proposed for clinical and field diagnostics of the tularemia pathogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1.
Fig. 2.

Notes

  1. SanPiN 3.3686-21 “Sanitary and Epidemiological Requirements for the Prevention of Infectious Diseases.”

  2. MU 1.3.2569-09 “Organization of the Work of Laboratories that Utilize Nucleic Acid Amplification Methods when Working with Material Containing Microorganisms of Pathogenicity Groups I–IV: Guidelines.”

REFERENCES

  1. Mokrievich, A.N., Kudryavtseva, T.Yu., Varlamov, D.A., Sochivko, D.G., and Dyatlov, I.A., RF Patent 2542395, Byull. Izobret., 2015, no. 5.

  2. Zasada, A.A., Formińska, K., Zacharczuk, K., Jacob, D., and Grunow, R., Comparison of eleven commercially available rapid tests for detection of Bacillus anthracis, Francisella tularensis and Yersinia pestis, Lett. Appl. Microbiol., 2015, vol. 60, no. 5, pp. 409–413. https://doi.org/10.1111/lam.12392

    Article  CAS  PubMed  Google Scholar 

  3. Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N., and Hase, T., Loop-mediated isothermal amplification of DNA, Nucleic Acids Res., 2000, vol. 28, no. 12, p. e63. https://doi.org/10.1093/nar/28.12.e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Annaka, T., Rapid and simple detection of Legionella species by LAMP, a new DNA amplification method, J. Jpn. Soc. Clin. Microbiol., 2003, vol. 13, pp. 19–21. PMID .14984304

    CAS  Google Scholar 

  5. Ohtsuka, K., Yanagawa, K., Takatori, K., and Hara-Kudo, Y., Detection of Salmonella enterica in naturally contaminated liquid eggs by loop-mediated isothermal amplification, and characterization of Salmonella isolates, Appl. Environ. Microbiol., 2005, vol. 71, no. 11, pp. 6730–6735. https://doi.org/10.1128/AEM.71.11.6730-6735.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geojith, G., Dhanasekaran, S., Chandran, S.P., and Kenneth, J., Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting, J. Microbiol. Methods, 2011, vol. 84, no. 1, pp. 71–73. https://doi.org/10.1016/j.mimet.2010.10.015

    Article  CAS  PubMed  Google Scholar 

  7. Hatano, B., Maki, T., Obara, T., Fukumoto, H., Hagisawa, K., Matsushita, Y., Okutani, A., Bazartseren, B., Inoue, S., Sata, T., and Katano, H., LAMP using a disposable pocket warmer for anthrax detection, a highly mobile and reliable method for anti-bioterrorism, Jpn. J. Infect. Dis., 2010, vol. 63, no. 1, pp. 36–40. PMID.20093760

    Article  CAS  PubMed  Google Scholar 

  8. Yamazaki, W., Seto, K., Taguchi, M., Ishibashi, M., and Inoue, K., Sensitive and rapid detection of cholera toxin producing Vibrio cholerae using a loop mediated isothermal amplification, BMC Microbiol., 2008, vol. 8, p. 94. https://doi.org/10.1186/1471-2180-8-94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shchit, I.Yu., Ignatov, K.B., Kudryavtseva, T.Yu., Shishkova, N.A., Mironova, R.I., Marinin, L.I., Mokrievich, A.N., Kramarov, V.M., Biketov, S.F., and Dyatlov, I.A., The use of loop-mediated isothermal DNA amplification for the detection and identification of the anthrax pathogen, Mol. Genet., Microbiol. Virol., 2017, vol. 32, no. 2, pp. 100–108. https://doi.org/10.3103/S0891416817020094

    Article  Google Scholar 

  10. Ponomareva, A.S., Khunkheeva, Zh.Yu., Mironova, L.V., Shchit, I.Yu., Biketov, S.F., Mitkeeva, S.K., and Balakhonov, S.V., Approbation of loop isothermal amplification reaction for DNA detection of toxigenic Vibrio cholera strains, Infekts. Immun., 2016, vol. 6, no. 3, p. 285.

    Google Scholar 

  11. Caipang, C.M., Kulkarni, A., Brinchmann, M.F., Korsnes, K., and Kiron, V., Detection of Francisella piscicida in Atlantic cod (Gadus morhua L.) by the loop-mediated isothermal amplification (LAMP) reaction, Vet. J., 2010, vol. 184, no. 3, pp. 357–361. https://doi.org/10.1016/j.tvjl.2009.03.027

    Article  CAS  PubMed  Google Scholar 

  12. Houmansadr, F. and Soleimani, M., Design and application of a loop mediated isothermal amplification (LAMP) assay to detect of Francisella tularensis, Proc. 12th Int. Congress of Laboratory and Clinical Sciences, December 12–14, 2019, Tehran: Shahid Beheshti University of Medical Sciences, 2019.

  13. Kulikalova, E.S., Balakhonov, S.V., Syngeeva, A.K., Adel’shin, R.V., Biketov, S.F., Shchit, I.Yu., Mazepa, A.V., and Mironova, L.V., Use of loop isothermal amplification reaction (LAMP) for detection of DNA of virulent strains of Francisella tularensis, Infekts. Immun.,2016, vol. 6, no. 3, p. 254.

    Google Scholar 

  14. Mohapatra, N.P., Soni, S., Rajaram, M.V.S., Strandberg, K.L., and Gunn, J.S., Type A Francisella tularensis acid phosphatases contribute to pathogenesis, PLoS One, 2013, vol. 8, no. 2, p. e56834. https://doi.org/10.1371/journal.pone.0056834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Santic, M., Molmeret, M., Klose, K.E., Jones, S., and Kwaik, Y.A., The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm, Cell. Microbiol., 2005, vol. 7, no. 7, pp. 969–979. https://doi.org/10.1111/j.1462-5822.2005.00526.x

    Article  CAS  PubMed  Google Scholar 

  16. Nano, F.E., Zhang, N., Cowley, S.C., Klose, K.E., Cheung, K.K., Roberts, M.J., Ludu, J.S., Letendre, G.W., Meierovics, A.I., Stephens, G., and Elkins, K.L., A Francisella tularensis pathogenicity island required for intramacrophage growth, J. Bacteriol., 2004, vol. 186, no. 19, pp. 6430–6436. https://doi.org/10.1128/JB.186.19.6430-6436.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hickey, A.J., Hazlett, K.R., Kirimanjeswara, G.S., and Metzger, D.W., Identification of Francisella tularensis outer membrane protein A (FopA) as a protective antigen for tularemia, Vaccine, 2011, vol. 29, no. 40, pp. 6941–6947. https://doi.org/10.1016/j.vaccine.2011.07.075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shchit, I.Yu., Biketov, S.F., and Dyatlov, I.A., RF Patent 2703803, Byull. Izobret., 2019, no. 30.

  19. Shchit, I.Yu., Biketov, S.F., and Kulikalova, E.S., RF Patent 2706564, Byull. Izobret., 2019, no. 32.

  20. Oscorbin, I.P., Belousova, E.A., Zakabunin, A.I., Boyarskikh, U.A., and Filipenko, M.L., Comparison of fluorescent intercalating dyes for quantitative loop-mediated isothermal amplification (qLAMP), Biotechniques, 2016, vol. 61, no. 1, pp. 20–25. https://doi.org/10.2144/000114432

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to R.I. Mironova, researcher at the Department of Especially Dangerous Infections of the State Research Center for Applied Microbiology and Biotechnology, for selecting and providing strains of the tularemia microbe and heterologous microorganisms.

Funding

This work was carried out within the sectorial program of Rospotrebnadzor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Mokrievich.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies using warm-blooded animals or human beings as subjects.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Novikova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchit, I.Y., Kudryavtseva, T.Y., Mokrievich, A.N. et al. Detection of Tularemia Agent DNA by Loop Mediated Isothermal Amplification. Mol. Genet. Microbiol. Virol. 37, 202–208 (2022). https://doi.org/10.3103/S0891416822040085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416822040085

Keywords:

Navigation