Skip to main content
Log in

Differential Activity of Genes with IS630/TC1/MARINER Transposon Fragments in the Genome of the Ctenophore Mnemiopsis leidyi

  • EXPERIMENTAL PAPERS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

Mobile genetic elements (MGEs) have a significant impact on genome structure and function being also a source of new genes. As a result of “molecular domestication,” genes encoded by MGEs become functional parts of the host genome. The IS630/Tc1/mariner (ITm) DNA transposon superfamily is one of the most widespread and diverse. To date, several genes are known to have resulted from the ITm transposon co-option. The aim of the present work was to search for the ctenophore Mnemiopsis leidyi genes with integrated fragments of ITm-transposons and subsequent analysis of their of expression levels. In the present work, the local alignment method (BLASTn) was used to search for the hypothetical chimeric genes. The analysis of differential gene activity was performed with the combined use of the Kallisto and Sleuth software. No cDNAs were found that would match the full coding sequence of any M. leidyi ITm transposase. However, 21 unique transcripts of hypothetical chimeric genes containing regions homologous to ITm transposons have been found. Transcriptional analysis showed that during early embryonic development, as well as in the crest and epithelium tissues of adult animals, most hypothetical chimeric genes are not expressed or are expressed at a low level. However, several loci showed differential activity levels during regeneration. The differential activity of some hypothetical chimeric genes during regeneration may indicate their possible “domestication” and involvement in molecular genetic processes in ctenophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Sinzelle, L., Izsvák, Z., and Ivics, Z., Molecular domestication of transposable elements: from detrimental parasites to useful host genes, Cell. Mol. Life Sci., 2009, vol. 66, no. 6, pp. 1073–1093. https://doi.org/10.1007/s00018-009-8376-3

    Article  CAS  PubMed  Google Scholar 

  2. Bourque, G., Burns, K.H., Gehring, M., Gorbunova, V., Seluanov, A., Mager, D.L., and Feschotte, C., Ten things you should know about transposable elements, Genome Biol., 2018, vol. 19 p. 199. https://doi.org/10.1186/s13059-018-1577-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yurchenko, N.N., Kovalenko, L.V., and Zakharov, I.K., Transposable elements: Instability of genes and genomes. Russ. J. Genet.: Appl. Res., 2011, vol. 1, no. 6, pp. 489–496. https://doi.org/10.1134/S2079059711060141

    Article  Google Scholar 

  4. Piacentini, L., Fanti, L., Specchia, V., Bozzetti, M.P., Berloco, M., Palumbo, G., and Pimpinelli, S., Transposons, environmental changes, and heritable induced phenotypic variability, Chromosoma, 2014, vol. 123, no. 4, pp. 345–354. https://doi.org/10.1007/s00412-014-0464-y

    Article  PubMed  PubMed Central  Google Scholar 

  5. Auvinet, J., Graça, P., Belkadi, L., Petit, L., Bonnivard, E., Dettaï, A., et al., Mobilization of retrotransposons as a cause of chromosomal diversification and rapid speciation: The case for the Antarctic teleost genus Trematomus, BMC Genomics, 2018, vol. 19, no. 1, p. 339. https://doi.org/10.1186/s12864-018-4714-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J.L., Capy, P., Chalhoub, B., et al., A unified classification system for eukaryotic transposable elements, Nat. Rev. Genet., 2007, vol. 8, no. 12, pp. 973–982. https://doi.org/10.1038/nrg2165

    Article  CAS  PubMed  Google Scholar 

  7. Kojima, K.K., Human transposable elements in Repbase: Genomic footprints from fish to humans, Mobile DNA, 2018, vol. 9, p. 2. https://doi.org/10.1186/s13100-017-0107-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yuan, Y.W. and Wessler, S.R., The catalytic domain of all eukaryotic cut-and-paste transposase superfamilies, Proc. Natl. Acad. Sci. U. S. A., 2011, vol. 108, no. 19, pp. 7884–7889. https://doi.org/10.1073/pnas.1104208108

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dupeyron, M., Baril, T., Bass, C., and Hayward, A., Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements, Mobile DNA, 2020, vol. 11, p. 21. https://doi.org/10.1186/s13100-020-00212-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gao, B., Wang, Y., Diaby, M., Zong, W., Shen, D., Wang, S., et al., Evolution of pogo, a separate superfamily of IS630-Tc1-mariner transposons, revealing recurrent domestication events in vertebrates, Mobile DNA, 2020, vol. 11, p. 25. https://doi.org/10.1186/s13100-020-00220-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shao, H. and Tu, Z., Expanding the diversity of the IS630-Tc1-mariner superfamily: Discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons, Genetics, 2001, vol. 159, no. 3, pp. 1103–1115. https://doi.org/10.1093/genetics/159.3.1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tellier, M., Bouuaert, C.C., and Chalmers, R., Mariner and the ITm superfamily of transposons, Microbiol. Spectrum, 2015, vol. 3, no. 2, p. MDNA3-0033-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0033-2014

  13. Zhang, H.H., Shen, Y.H., Xiong, X.M., Han, M.J., and Zhang, X.G., Identification and evolutionary history of the DD41D transposons in insects, Genes Genomics, 2016, vol. 38, pp. 109–117. https://doi.org/10.1007/s13258-015-0356-4

    Article  CAS  Google Scholar 

  14. Shen, D., Gao, B., Miskey, C., Chen, C., Sang, Y., Zong, W., et al., Multiple invasions of visitor, a DD41D family of Tc1/mariner transposons, throughout the evolution of vertebrates, Genome Biol. Evol., 2020, vol. 12, no. 7, pp. 1060–1073. https://doi.org/10.1093/gbe/evaa135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, S., Diaby, M., Puzakov, M., Ullah, N., Wang, Y., Danley, P., et al., Divergent evolution profiles of DD37D and DD39D families of Tc1/mariner transposons in eukaryotes, Mol. Phylogenet. Evol., 2021, vol. 161 p. 107143. https://doi.org/10.1016/j.ympev.2021.107143

    Article  PubMed  Google Scholar 

  16. Feschotte, C. and Pritham, E.J., DNA transposons and the evolution of eukaryotic genomes, Annu. Rev. Genet., 2007, vol. 41, pp. 331–368. https://doi.org/10.1146/annurev.genet.40.110405.090448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, Y. and Yang, G., Tc1-like transposable elements in plant genomes, Mobile DNA, 2014, vol. 5, p. 17. PMID 24926322; PMCID PMC4054914. https://doi.org/10.1186/1759-8753-5-1724926322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Emmons, S.W., Yesner, L., Ruan, K.S., and Katzenberg, D., Evidence for a transposon in Caenorhabditis elegans, Cell, 1983, vol. 32, no. 1, pp. 55–65. https://doi.org/10.1016/0092-8674(83)90496-8

    Article  CAS  PubMed  Google Scholar 

  19. Franz, G. and Savakis, C., Minos, a new transposable element from Drosophila hydei, is a member of the Tc1-like family of transposons, Nucleic Acids Res., 1991, vol. 19, no. 23, p. 6646. https://doi.org/10.1093/nar/19.23.6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Langin, T., Capy, P., and Daboussi, M.J., The transposable element Impala, a fungal member of the Tc1-mariner superfamily, Mol. Gen. Genet., 1995, vol. 246, no. 1, pp. 19–28. https://doi.org/10.1007/BF00290129

    Article  CAS  PubMed  Google Scholar 

  21. Schaack, S., Gilbert, C., and Feschotte, C., Promiscuous DNA: Horizontal transfer of transposable elements and why it matters for eukaryotic evolution, Trends Ecol. Evol., 2010, vol. 25, no. 9, pp. 537–546. https://doi.org/10.1016/j.tree.2010.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  22. Puzakov, M.V., Puzakova, L.V., Cheresiz, S.V., and Sang, Y., The IS630/Tc1/mariner transposons in three ctenophore genomes, Mol. Phylogenet. Evol., 2021, vol. 163, p. 107231. https://doi.org/10.1016/j.ympev.2021.107231

    Article  PubMed  Google Scholar 

  23. Bowen, N.J. and Jordan, I.K., Exaptation of protein coding sequences from transposable elements, Genome Dyn., 2007, vol. 3, pp. 147–162. https://doi.org/10.1159/000107609

    Article  CAS  PubMed  Google Scholar 

  24. Jangam, D., Feschotte, C., and Betrán, E., Transposable element domestication as an adaptation to evolutionary conflicts, Trends Genet., 2017, vol. 33, no. 11, pp. 817–831. https://doi.org/10.1016/j.tig.2017.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kapitonov, V.V. and Jurka, J., RAG1 core and V (D) J recombination signal sequences were derived from Transib transposons, PLoS Biol., 2005, vol. 3, no. 6, p. e181. https://doi.org/10.1371/journal.pbio.0030181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Panchin, Y. and Moroz, L.L., Molluscan mobile elements similar to the vertebrate recombination-activating genes, Biochem. Biophys. Res. Commun., 2008, vol. 369, no. 3, pp. 818–823. https://doi.org/10.1016/j.bbrc.2008.02.097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim, H.S., Chen, Q., Kim, S.K., Nickoloff, J.A., Hromas, R., Georgiadis, M.M., and Lee, S.H., The DDN catalytic motif is required for Metnase functions in non-homologous end joining (NHEJ) repair and replication restart, J. Biol. Chem., 2014, vol. 289, no. 15, pp. 10930–10938. https://doi.org/10.1074/jbc.M113.533216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mateo, L., Ullastres, A., and González, J., A transposable element insertion confers xenobiotic resistance in Drosophila, PLoS Genet., 2014, vol. 10, no. 8, p. e1004560. https://doi.org/10.1371/journal.pgen.1004560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mills, C.E., 1998-Present. Phylum Ctenophora: List of All Valid Species Names. https://faculty.washington.edu/cemills/Ctenolist.html. Accessed March 30, 2017.

  30. Pang, K. and Martindale, M.Q., Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi, Dev. Genes Evol., 2008, vol. 218, pp. 307–319. https://doi.org/10.1007/s00427-008-0222-3

    Article  CAS  PubMed  Google Scholar 

  31. Moroz, L.L., Kocot, K.M., Citarella, M.R., Dosung, S., Norekian, T.P., Povolotskaya, I.S., et al., The ctenophore genome and the evolutionary origins of neural systems, Nature, 2014, vol. 10, no. 7503, pp. 109–114. https://doi.org/10.1038/nature13400

    Article  CAS  Google Scholar 

  32. Ryan, J.F., Pang, K., Schnitzler, C.E., Nguyen, A.D., Moreland, R.T., Simmons, D.K., Koch, B.J., Francis, W.R., Havlak, P., Comparative Sequencing Program N.I.S.C., Smith, S.A., Putnam, N.H., Haddock, S.H., Dunn, C.W., Wolfsberg, T.G., Mullikin, J.C., Martindale, M.Q., and Baxevanis, A.D., The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution, Science, 2013, vol. 342, no. 6164, p. 1242592. https://doi.org/10.1126/science.1242592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jekely, G., Paps, J., and Nielsen, C., The phylogenetic position of ctenophores and the origin(s) of nervous systems, Evodevo, 2015, vol. 6, pp. 1–8. https://doi.org/10.1186/2041-9139-6-1

    Article  PubMed  PubMed Central  Google Scholar 

  34. Vinogradov, M.E., Shushkina, E.A., Musaeva, E.I., and Sorokin, P.Yu., A newly acclimated species in the Black Sea: The ctenophore Mnemiopsis leidyi (Ctenophora: Lobata), Oceanology, 1989, vol. 29, no. 2, pp. 220–224.

    Google Scholar 

  35. Shiganova, T.A., Ctenophore Mnemiopsis leidyi and ichthyoplankton in the Sea of Marmara in October 1992, Oceanology, 1993, vol. 33, no. 6, pp. 900–903.

    Google Scholar 

  36. Ivanov, V.P., Kamakin, A.M., and Ushivtzev, V.B., Invasion of the Caspian Sea by the comb jellyfish Mnemiopsis leidyi (Ctenophora), Biol. Invasions, 2000, vol. 2, pp. 255–258. https://doi.org/10.1023/A:1010098624728

    Article  Google Scholar 

  37. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 1997, vol. 25, pp. 3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wheeler, D.L., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., et al., Database resources of the National Center for Biotechnology Information, Nucleic Acids Res., 2008, vol. 36, no. 1, pp. 13–21. https://doi.org/10.1093/nar/gkm1000

    Article  CAS  Google Scholar 

  39. Bray, N.L., Pimentel, H., Melsted, P., and Pachter, L., Near-optimal probabilistic RNA-seq quantification, Nat. Biotechnol., 2016, vol. 34, no. 5, pp. 525–527. https://doi.org/10.1038/nbt.3519

    Article  CAS  PubMed  Google Scholar 

  40. Pimentel, H., Bray, N.L., Puente, S., Melsted, P., and Pachter, L., Differential analysis of RNA-seq incorporating quantification uncertainty, Nat. Methods, 2017, vol. 14, no. 7, pp. 687–690. https://doi.org/10.1038/nmeth.4324

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the “Functional, Metabolic, and Toxicological Aspects of Hydrobionts and Their Populations in Biotopes with Different Physical and Chemical Conditions” state order to the Kovalevsky Institute of the Biology of Southern Seas (state registration no. 121041400077-1) and the Russian Foundation for Basic Research and the city of Sevastopol (project no. 18-44-920002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Puzakov.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

No experimentation involving animals or human beings was performed by any of the authors.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Martynova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puzakov, M.V., Puzakova, L.V. & Ulupova, Y.N. Differential Activity of Genes with IS630/TC1/MARINER Transposon Fragments in the Genome of the Ctenophore Mnemiopsis leidyi. Mol. Genet. Microbiol. Virol. 37, 194–201 (2022). https://doi.org/10.3103/S089141682204005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S089141682204005X

Keywords:

Navigation