Skip to main content

Advertisement

Log in

A bioscaffold of decellularized whole osteochondral sheet improves proliferation and differentiation of loaded mesenchymal stem cells in a rabbit model

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

As a Natural decellularized extracellular matrix, osteochondral tissue is the best scaffold for the restoration of osteoarthritis defects. Bioscaffolds have the most similarly innate properties like biomechanical properties and the preserved connection of the bone-to-cartilage border. Although, their compacity and low porosity particularly, are proven to be difficulties of decellularization and cell penetration. This study aims to develop a new bioscaffold of decellularized osteochondral tissue (DOT) that is recellularized by bone marrow-derived mesenchymal stem cells (BM-MSCs), as a biphasic allograft, which preserved the interface between the cartilage section and subchondral bone of the joint. Whole osteochondral tissues of rabbit knee joints were sheeted in cartilaginous parts in 200–250 µm sections while connected to the subchondral bone and then fully decellularized. The BM-MSCs were seeded on the scaffolds in vitro; some constructs were subcutaneously implanted into the back of the rabbit. The cell penetration, differentiation to bone and cartilage, viability, and cell proliferation in vitro and in vivo were evaluated by qPCR, histological staining, MTT assay, and immunohistochemistry. DNA content analysis and SEM assessments confirmed the decellularization of the bioscaffold. Then, histological and SEM evaluations indicated that the cells could successfully penetrate the bone and cartilage lacunas in implanted grafts. MTT assay confirmed cell proliferation. Prominently, gene expression analysis showed that seeded cells differentiated into osteoblasts and chondrocytes in both bone and cartilage sections. More importantly, seeded cells on the bioscaffold started ECM secretion. Our results indicate that cartilage-to-bone border integrity was largely preserved. Additionally, ECM-sheeted DOT could be employed as a useful scaffold for promoting the regeneration of osteochondral defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  PubMed  Google Scholar 

  • Bakhtiary N, Liu C, Ghorbani F (2021) bioactive inks development for osteochondral tissue engineering: a mini-review. Gels 7(4):274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogoevski K, Woloszyk A, Blackwood K, Woodruff MA, Glatt V (2019) Tissue morphology and antigenicity in mouse and rat tibia: comparing 12 different decalcification conditions. J Histochem Cytochem 67(8):545–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosnakovski D, Mizuno M, Kim G, Takagi S, Okumura M, Fujinaga T (2006) Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis. Biotechnol Bioeng 93(6):1152–1163

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Lin FH, Lin CC, Chou CH, Liu HC (2004) Cartilage tissue engineering on the surface of a novel gelatin-calcium-phosphate biphasic scaffold in a double-chamber bioreactor. J Biomed Mater Res B Appl Biomater 71(2):313–321

    Article  PubMed  Google Scholar 

  • Chen CC, Liao CH, Wang YH, Hsu YM, Huang SH, Chang CH et al (2012) Cartilage fragments from osteoarthritic knee promote chondrogenesis of mesenchymal stem cells without exogenous growth factor induction. J Orthop Res 30(3):393–400

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Dong C, Yang L, Lv Y (2015) 3D Scaffolds with different stiffness but the same microstructure for bone tissue engineering. ACS Appl Mater Interfaces 7(29):15790–15802

    Article  CAS  PubMed  Google Scholar 

  • Cheng NC, Estes BT, Awad HA, Guilak F (2009) Chondrogenic differentiation of adipose-derived adult stem cells by a porous scaffold derived from native articular cartilage extracellular matrix. Tissue Eng Part A 15(2):231–241

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Solorio LD, Alsberg E (2014) Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopedic tissue engineering. Biotechnol Adv 32(2):462–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da H, Jia SJ, Meng GL, Cheng JH, Zhou W, Xiong Z et al (2013) The impact of compact layer in biphasic scaffold on osteochondral tissue engineering. PLoS ONE 8(1):e54838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Girolamo L, Niada S, Arrigoni E, Di Giancamillo A, Domeneghini C, Dadsetan M et al (2015) Repair of osteochondral defects in the minipig model by OPF hydrogel loaded with adipose-derived mesenchymal stem cells. Regen Med 10(2):135–151

    Article  PubMed  Google Scholar 

  • Deng C, Chang J, Wu C (2019) Bioactive scaffolds for osteochondral regeneration. J Orthop Transl 17:15–25

    Google Scholar 

  • Duan P, Pan Z, Cao L, Gao J, Yao H, Liu X et al (2019) Restoration of osteochondral defects by implanting bilayered poly(lactide-co-glycolide) porous scaffolds in rabbit joints for 12 and 24 weeks. J Orthop Transl 19:68–80

    Google Scholar 

  • Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S et al (2012) Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med 15(7):422–428

    PubMed  Google Scholar 

  • Eslaminejad MB, Nikmahzar A, Taghiyar L, Nadri S, Massumi M (2006) Murine mesenchymal stem cells isolated by low density primary culture system. Dev Growth Differ 48(6):361–370

    Article  CAS  PubMed  Google Scholar 

  • Forrestal DP, Klein TJ, Woodruff MA (2017) Challenges in engineering large customized bone constructs. Biotechnol Bioeng 114(6):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2(6):872–883

    Article  CAS  PubMed  Google Scholar 

  • Gomoll AH, Filardo G, de Girolamo L, Espregueira-Mendes J, Marcacci M, Rodkey WG et al (2012) Surgical treatment for early osteoarthritis: part I: cartilage repair procedures. Knee Surg Sports Traumatol Arthrosc 20(3):450–466

    Article  CAS  PubMed  Google Scholar 

  • Gong YY, Xue JX, Zhang WJ, Zhou GD, Liu W, Cao Y (2011) A sandwich model for engineering cartilage with acellular cartilage sheets and chondrocytes. Biomaterials 32(9):2265–2273

    Article  CAS  PubMed  Google Scholar 

  • Griffin M, Naderi N, Kalaskar DM, Malins E, Becer R, Thornton CA et al (2018) Evaluation of sterilisation techniques for regenerative medicine scaffolds fabricated with polyurethane nonbiodegradable and bioabsorbable nanocomposite materials. Int J Biomater 2018:6565783

    Article  PubMed  PubMed Central  Google Scholar 

  • Heymer A, Bradica G, Eulert J, Noth U (2009) Multiphasic collagen fibre-PLA composites seeded with human mesenchymal stem cells for osteochondral defect repair: an in vitro study. J Tissue Eng Regen Med 3(5):389–397

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Godkin O, Schulze-Tanzil G (2017) The challenge in using mesenchymal stromal cells for recellularization of decellularized cartilage. Stem Cell Rev 13(1):50–67

    Article  CAS  Google Scholar 

  • Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T et al (2004) Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320(3):914–919

    Article  CAS  PubMed  Google Scholar 

  • Jackson DW, Lalor PA, Aberman HM, Simon TM (2001) Spontaneous repair of full-thickness defects of articular cartilage in a goat model: a preliminary study. J Bone Joint Surg Am 83(1):53–64

    Article  CAS  PubMed  Google Scholar 

  • Jiang CC, Chiang H, Liao CJ, Lin YJ, Kuo TF, Shieh CS et al (2007) Repair of porcine articular cartilage defect with a biphasic osteochondral composite. J Orthop Res 25(10):1277–1290

    Article  CAS  PubMed  Google Scholar 

  • Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC et al (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5):1254–1266

    Article  CAS  PubMed  Google Scholar 

  • Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73

    Article  CAS  PubMed  Google Scholar 

  • Lan Levengood SK, Polak SJ, Wheeler MB, Maki AJ, Clark SG, Jamison RD et al (2010) Multiscale osteointegration as a new paradigm for the design of calcium phosphate scaffolds for bone regeneration. Biomaterials 31(13):3552–3563

    Article  CAS  PubMed  Google Scholar 

  • Li X, Ding J, Wang J, Zhuang X, Chen X (2015) Biomimetic biphasic scaffolds for osteochondral defect repair. Regen Biomater 2(3):221–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Chen Y, Fu Q, Wu H, Zhou Y, Shao J et al (2021) Decellularized extracellular matrix loaded with IPFP-SC for repairing rabbit osteochondral defects. Am J Transl Res 13(10):11026–11047

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao J, Tian T, Shi S, Xie X, Ma Q, Li G et al (2017) The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Res 5:17018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longley R, Ferreira AM, Gentile P (2018) Recent Approaches to the Manufacturing of Biomimetic Multi-Phasic Scaffolds for Osteochondral Regeneration. Int J Mol Sci 19(6):1755

    Article  PubMed  PubMed Central  Google Scholar 

  • Medvedeva EV, Grebenik EA, Gornostaeva SN, Telpuhov VI, Lychagin AV, Timashev PS et al (2018) Repair of damaged articular cartilage: current approaches and future directions. Int J Mol Sci 19(8):2366

    Article  PubMed  PubMed Central  Google Scholar 

  • Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS (2010) Inorganic-organic hybrid scaffolds for osteochondral regeneration. J Biomed Mater Res A 94(1):112–121

    Article  PubMed  Google Scholar 

  • O’Shea TM, Miao X (2008) Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev 14(4):447–464

    Article  CAS  PubMed  Google Scholar 

  • Perdisa F, Filardo G, Sessa A, Busacca M, Zaffagnini S, Marcacci M et al (2017) One-step treatment for patellar cartilage defects with a cell-free osteochondral scaffold: a prospective clinical and MRI evaluation. Am J Sports Med 45(7):1581–1588

    Article  PubMed  Google Scholar 

  • Perdisa F, Kon E, Sessa A, Andriolo L, Busacca M, Marcacci M et al (2018) Treatment of knee osteochondritis dissecans with a cell-free biomimetic osteochondral Scaffold: clinical and imaging findings at midterm follow-up. Am J Sports Med 46(2):314–321

    Article  PubMed  Google Scholar 

  • Peterson L, Minas T, Brittberg M, Lindahl A (2003) Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am 85:17–24

    Article  PubMed  Google Scholar 

  • Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL et al (2019) Scaffolding strategies for tissue engineering and regenerative medicine applications. Materials 12(11):1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiang Y, Yanhong Z, Jiang P, Shibi L, Quanyi G, Xinlong M et al (2014) Xenoimplantation of an extracellular-matrix-derived, biphasic, cell-scaffold construct for repairing a large femoral-head high-load-bearing osteochondral defect in a canine model. Sci World J 2014:127084

    Article  Google Scholar 

  • Robertson MJ, Dries-Devlin JL, Kren SM, Burchfield JS, Taylor DA (2014) Optimizing recellularization of whole decellularized heart extracellular matrix. PLoS ONE 9(2):e90406

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawkins MJ, Bowen W, Dhadda P, Markides H, Sidney LE, Taylor AJ et al (2013) Hydrogels derived from demineralized and decellularized bone extracellular matrix. Acta Biomater 9(8):7865–7873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I, Halbhuber KJ et al (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143(3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Schleicher I, Lips KS, Sommer U, Schappat I, Martin AP, Szalay G et al (2013) Biphasic scaffolds for repair of deep osteochondral defects in a sheep model. J Surg Res 183(1):184–192

    Article  CAS  PubMed  Google Scholar 

  • Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW (2014) Strategies for osteochondral repair: focus on scaffolds. J Tissue Eng 5:2041731414541850

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan DC, Mirmalek-Sani SH, Deegan DB, Baptista PM, Aboushwareb T, Atala A et al (2012) Decellularization methods of porcine kidneys for whole organ engineering using a high-throughput system. Biomaterials 33(31):7756–7764

    Article  CAS  PubMed  Google Scholar 

  • Taghiyar L, Hesaraki M, Sayahpour FA, Satarian L, Hosseini S, Aghdami N et al (2017) Msh homeobox 1 (Msx1)- and Msx2-overexpressing bone marrow-derived mesenchymal stem cells resemble blastema cells and enhance regeneration in mice. J Biol Chem 292(25):10520–10533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taghiyar L, Hosseini S, Hesaraki M, Azam Sayahpour F, Aghdami N, Baghaban EM (2018) Isolation, characterization and osteogenic potential of mouse digit tip blastema cells in comparison with bone marrow-derived mesenchymal stem cells in vitro. Cell J 19(4):585–598

    PubMed  Google Scholar 

  • Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C et al (2010) Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 16(7):814–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vacanti CA, Langer R, Schloo B, Vacanti JP (1991) Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plast Reconstr Surg 88(5):753–759

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Han L, Sun T, Ma J, Sun S, Ma L et al (2020) Extracellular matrix derived from allogenic decellularized bone marrow mesenchymal stem cell sheets for the reconstruction of osteochondral defects in rabbits. Acta Biomater 118:54–68

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Dai H (2021) Articular cartilage and osteochondral tissue engineering techniques: recent advances and challenges. Bioact Mater 6(12):4830–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Liu C, Tu C, Zhang R, Tang X, Li H et al (2021) Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res Ther 12(1):572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Shi Y, Wei X, He J, Yang S, Dickson G et al (2010) Fabrication and repair of cartilage defects with a novel acellular cartilage matrix scaffold. Tissue Eng Part C Methods 16(5):865–876

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Peng J, Lu SB, Guo QY, Zhao B, Zhang L et al (2011) Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model. Chin Med J 124(23):3930–3938

    CAS  PubMed  Google Scholar 

  • Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lei Z, Qi Y, Di T, Li G, Zhang W et al (2017) Adipose-derived stem cell sheet encapsulated construct of micro-porous decellularized cartilage debris and hydrogel for cartilage defect repair. Med Hypotheses 109:111–113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mirnajafi (Tarbiat Modares University, Tehran, Iran) for his technical and scientific assistance.

Funding

This work was supported by Royan Institute, Tehran, Iran (Grant No: 91000291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamadreza Baghaban Eslaminejad.

Ethics declarations

Conflict of interest

All authors contributed to the study’s conception and design. Material preparation, ion, data collection, and analysis were performed by [leila taghiyar] and [Hamideh Asadi]. The first draft of the manuscript was written by [Mohamadreza baghaban Eslaminejad] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Ethical approval

The study protocol was approved by the institutional review board of the Royan Institute. The animal studies were performed after receiving approval from the Institutional Animal Care and Use Committee (IACUC) in the Royan Institutional (IACUC Approval No. J/90/1397).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10561_2023_10084_MOESM1_ESM.tif

Supplementary Figure 1. Rabbit total knee used for osteochondral sample isolation (A), Macroscopic presentation of the osteochondral scaffold before cutting (B), CAMPDEN cutting system used for the preparation of cartilage sheets (C), Macroscopic presentation of osteochondral scaffold after producing the sheets in cartilage part (D), Constructs after seeding cells in culture media (E), Subcutaneous implantation of scaffolds onto rabbits back (F)

10561_2023_10084_MOESM2_ESM.docx

Table 1. Description of rabbit primers used in the quantitative reverse transcription polymerase chain reactions (qPCR).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghiyar, L., Asadi, H. & Baghaban Eslaminejad, M. A bioscaffold of decellularized whole osteochondral sheet improves proliferation and differentiation of loaded mesenchymal stem cells in a rabbit model. Cell Tissue Bank 24, 711–724 (2023). https://doi.org/10.1007/s10561-023-10084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-023-10084-2

Keywords

Navigation