Skip to main content
Log in

Efficient screening of protein-ligand complexes in lipid bilayers using LoCoMock score

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Membrane proteins are attractive targets for drug discovery due to their crucial roles in various biological processes. Studying the binding poses of amphipathic molecules to membrane proteins is essential for understanding the functions of membrane proteins and docking simulations can facilitate the screening of protein–ligand complexes at low computational costs. However, identifying docking poses for a ligand in non-aqueous environments such as lipid bilayers can be challenging. To address this issue, we propose a new docking score called logP-corrected membrane docking (LoCoMock) score. To screen putative protein–ligand complexes embedded in a membrane, the LoCoMock score considers the affinity between a target ligand and the membrane. It combines the docking score of the protein–ligand complex with the logP of the target ligand. In demonstrations using several model ligands, the LoCoMock score screened more putative complexes than the conventional docking score. As extended docking, the LoCoMock score makes it possible to screen membrane proteins more effectively as drug targets than the conventional docking.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data and software availability

Structural data of proteins used in all the demonstrations are available from the OPM database. An implementation of the LoCoMock score on Jupyter notebook in Python can be downloaded from GitHub (https://github.com/riquri/LoCoMock).

References

  1. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) J Comput Chem 30(16):2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Trott O, Olson AJ (2010) J Comput Chem 31(2):455

    CAS  PubMed  PubMed Central  Google Scholar 

  3. van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016) J Mol Biol 428(4):720

    Article  PubMed  Google Scholar 

  4. Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval AB, Juhos S, Schmidtke P, Barril X, Hubbard RE, Morley SD (2014) PLoS Comput Biol 10(4):e1003571

    Article  PubMed  PubMed Central  Google Scholar 

  5. Grosdidier A, Zoete V, Michielin O (2011) Nucleic Acids Res 39 (Web Server issue):W270

  6. Huang SY, Zou X (2010) Int J Mol Sci 11(8):3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bohm HJ (1998) J Comput Aided Mol Des 12(4):309

    Article  CAS  PubMed  Google Scholar 

  8. Genheden S, Ryde U (2015) Expert Opin Drug Discov 10(5):449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cox B (2014) CHAPTER 1. Ion Channel Drug Discovery: a historical perspective. Royal Society of Chemistry, Ion Channel Drug Discovery, p 1

    Google Scholar 

  10. Shimada I, Ueda T, Kofuku Y, Eddy MT, Wuthrich K (2019) Nat Rev Drug Discov 18(1):59

    Article  CAS  PubMed  Google Scholar 

  11. Congreve M, de Graaf C, Swain NA, Tate CG (2020) Cell 181(1):81

    Article  CAS  PubMed  Google Scholar 

  12. Hauser AS, Attwood MM, Rask-Andersen M, Schioth HB, Gloriam DE (2017) Nat Rev Drug Discov 16(12):829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bald D, Villellas C, Lu P, Koul A (2017) mBio 8(2)

  14. Hurwitz N, Schneidman-Duhovny D, Wolfson HJ (2016) Bioinformatics 32(16):2444

    Article  CAS  PubMed  Google Scholar 

  15. Ghose AK, Crippen GM (1987) J Chem Inf Comput Sci 27(1):21

    Article  CAS  PubMed  Google Scholar 

  16. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Deliv Rev 23(1–3):3

    Article  CAS  Google Scholar 

  17. Prasad S, Brooks BR (2020) J Comput Aided Mol Des 34(5):535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daina A, Michielin O, Zoete V (2014) J Chem Inf Model 54(12):3284

    Article  CAS  PubMed  Google Scholar 

  19. Kim T, Park H (2015) J Mol Graph Model 60:108

    Article  CAS  PubMed  Google Scholar 

  20. Takahashi T, Matsui T, Hengphasatporn K, Shigeta Y (2021) Bull Chem Soc Jpn 94(7):1807

    Article  CAS  Google Scholar 

  21. Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L (2007) J Chem Inf Model 47(6):2140

    Article  CAS  PubMed  Google Scholar 

  22. Wildman SA, Crippen GM (1999) J Chem Inf Comput Sci 39(5):868

    Article  CAS  Google Scholar 

  23. Wang RX, Fu Y, Lai LH (1997) J Chem Inf Comput Sci 37(3):615

    Article  CAS  Google Scholar 

  24. Morgan HL (1965) J Chem Doc 5(2):107

    Article  CAS  Google Scholar 

  25. Tanimoto T (1957) Internal IBM Technical Report (8)

  26. Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL (2012) Nucleic Acids Res 40(Database issue):D370

    Article  CAS  PubMed  Google Scholar 

  27. RDKit Open-Source Cheminformatics Software

  28. Moreno AJR (2021) GitHub repository

  29. Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) J Chem Inf Model 61(8):3891

    Article  CAS  PubMed  Google Scholar 

  30. Koes DR, Baumgartner MP, Camacho CJ (2013) J Chem Inf Model 53(8):1893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun Y, Zhao H, Wang J, Zhu J, Wu S (2015) Appl Microbiol Biotechnol 99(18):7559

    Article  CAS  PubMed  Google Scholar 

  32. Kucerka N, Nagle JF, Sachs JN, Feller SE, Pencer J, Jackson A, Katsaras J (2008) Biophys J 95(5):2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ogata K, Hatakeyama M, Nakamura S (2018) Molecules 23(2):425

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bannan CC, Calabro G, Kyu DY, Mobley DL (2016) J Chem Theory Comput 12(8):4015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, Murray CW (2007) J Med Chem 50(4):726

    Article  CAS  PubMed  Google Scholar 

  36. Liu ZH, Li Y, Han L, Li J, Liu J, Zhao ZX, Nie W, Liu YC, Wang RX (2015) Bioinformatics 31(3):405

    Article  CAS  PubMed  Google Scholar 

  37. Su MY, Yang QF, Du Y, Feng GQ, Liu ZH, Li Y, Wang RX (2019) J Chem Inf Model 59(2):895

    Article  CAS  PubMed  Google Scholar 

  38. Sato N, Ishii S, Sugimoto H, Hino T, Fukumori Y, Sako Y, Shiro Y, Tosha T (2014) Proteins 82(7):1258

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Frerman FE, Kim JJ (2006) Proc Natl Acad Sci U S A 103(44):16212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhu G, Zeng H, Zhang S, Juli J, Pang X, Hoffmann J, Zhang Y, Morgner N, Zhu Y, Peng G, Michel H, Sun F (2020) Angew Chem Int Ed Engl 59(1):343

    Article  CAS  PubMed  Google Scholar 

  41. Tocilescu MA, Zickermann V, Zwicker K, Brandt U (2010) Biochim Biophys Acta 1797(12):1883

    Article  CAS  PubMed  Google Scholar 

  42. Muh F, Glockner C, Hellmich J, Zouni A (2012) Biochim Biophys Acta 1817(1):44

    Article  PubMed  Google Scholar 

  43. Nygaard R, Yu J, Kim J, Ross DR, Parisi G, Clarke OB, Virshup DM, Mancia F (2021) Cell 184(1):194

    Article  CAS  PubMed  Google Scholar 

  44. Hasan SS, Cramer WA (2014) Structure 22(7):1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berg J, Liu J, Svahn E, Ferguson-Miller S, Brzezinski P (2020) Biochim Biophys Acta Bioenerg 1861(2):148116

    Article  CAS  PubMed  Google Scholar 

  46. Mobbs JI, Belousoff MJ, Harikumar KG, Piper SJ, Xu X, Furness SGB, Venugopal H, Christopoulos A, Danev R, Wootten D, Thal DM, Miller LJ, Sexton PM (2021) PLoS Biol 19(6):e3001295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamamoto M, Hayakawa N, Murakami M, Kouyama T (2009) J Mol Biol 393(3):559

    Article  CAS  PubMed  Google Scholar 

  48. Grigorieff N, Ceska TA, Downing KH, Baldwin JM, Henderson R (1996) J Mol Biol 259(3):393

    Article  CAS  PubMed  Google Scholar 

  49. Mitsuoka K, Hirai T, Murata K, Miyazawa A, Kidera A, Kimura Y, Fujiyoshi Y (1999) J Mol Biol 286(3):861

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RH acknowledges the support from the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant Number JP21K06094 and the grant for basic science research projects of the Sumitomo foundation, Japan. This research was partially supported by the Initiative on the Promotion of Supercomputing for Young or Women Researchers, Information Technology Center, University of Tokyo. This study used the computational resources of Cygnus provided by the Multidisciplinary Cooperative Research Program at the Center for Computational Sciences (Project Code: LSC and MOLBIO), University of Tsukuba.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RM; Data curation: RM; Formal Analysis: RM; Funding acquisition: YS, RH; Investigation: RM; Methodology: RM, YS, RH; Project administration: RM; Resources: RM, YS, RH; Software: RM; Supervision: YS, RH; Validation: RM, RH; Visualization: RM; Writing – original draft: RM; Writing – review & editing: YS, RH.

Corresponding authors

Correspondence to Rikuri Morita or Ryuhei Harada.

Ethics declarations

Statements and declarations

There are no conflicts of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morita, R., Shigeta, Y. & Harada, R. Efficient screening of protein-ligand complexes in lipid bilayers using LoCoMock score. J Comput Aided Mol Des 37, 217–225 (2023). https://doi.org/10.1007/s10822-023-00502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-023-00502-8

Keywords

Navigation