Skip to main content
Log in

On Monogenity of Certain Pure Number Fields Defined by \(x^{2^r\cdot5^s\cdot 7^t}-m\)

  • Research Articles
  • Published:
p-Adic Numbers, Ultrametric Analysis and Applications Aims and scope Submit manuscript

Abstract

Let \(K\) be a pure number field generated by a root of a monic irreducible polynomial \(F(x)=x^{2^r\cdot5^s\cdot 7^t}-m\in \mathbb{Z}[x]\), where \(m\neq \pm 1\) is a square free integer, \(r\), \(s\), and \(t\) are three positive integers. In this paper, we study the monogenity of \(K\). We prove that if \(m\not\equiv 1 (\text{mod }{4})\), \(\overline{m}\not\in\{\pm\overline{1},\pm \overline{7}\} (\text{mod }{25})\), and \(\overline{m}\not\in\{\pm \overline{1},\pm \overline{18},\pm \overline{19}\} (\text{mod }{49})\), then \(K\) is monogenic. But if \(r\geq2\) and \(m\equiv 1 (\text{mod }{16})\) or \(r=1\), \(s\geq2\), and \(m\equiv \pm1 (\text{mod }{125})\) or \(r\geq2\) and \(m\equiv 1 (\text{mod }{25})\) or \(t\geq 3\), \(\nu_7(m^6-1)\geq 4\), and \(\overline{m}\in\{\overline{1},\overline{18},-\overline{19}\} (\text{mod }{49})\), then \(K\) is not monogenic. Some illustrating examples will be given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. Ahmad, T. Nakahara and S. M. Husnine, “Power integral bases for certain pure sextic fields,” Int. J. Numb. Theory 10 (8), 2257–2265 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Ahmad, T. Nakahara and S. M. Husnine, “On certain pure sextic fields related to a problem of Hasse,” Int. J. Alg. Comput. 26 (3), 577–583 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Ben Yakou, A. Chillali and L. El Fadil, “On power integral bases for certain pure number fields defined by \(x^{2^r\cdot 5^s}-m\),” Commun. Alg. 49 (7), 2916–2926 (2021).

    Article  MATH  Google Scholar 

  4. H. Ben Yakou and L. El Fadil, “On monogenity of certain pure number fields defined by \(x^{p^r}-m\),” Int. J. Numb. Theory 17 (10), 2235–2242 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Ben Yakou and O. Kchit, “On power integral bases for certain pure number fields defined by \(x^{3^r}-m\),” São Paulo J. Math. Sci. 16, 1072–1079 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bérczes, J. H. Evertse and K. Györy, “Multiply monogenic orders,” Ann. Sc. Norm. Super. Pisa-Cl. Sc. 5 (12), 467–497 (2013).

    MathSciNet  MATH  Google Scholar 

  7. H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138 (Springer-Verlag, Berlin, Heidelberg, 1993).

    MATH  Google Scholar 

  8. R. Dedekind, “Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen,” Göttingen Abhand. 23, 1–23 (1878).

    Google Scholar 

  9. L. El Fadil, “A note on the monogenity of pure number fields,” [arXiv:2106.00004] (2021).

  10. L. El Fadil, “Computation of a power integral basis of a pure cubic number field,” Int. J. Contemp. Math. Sci. 2 (13-16), 601–606 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  11. L. El Fadil, “On monogenity of certain pure number fields defined by \(x^{2^u\cdots3^v\cdot5^t}-m\),” [arXiv:2204.02436] (2022).

  12. L. El Fadil, “On power integral bases for certain pure number fields defined by \(x^{12}-m\),” Studia Sci. Math. Hungarica 57 (3), 397–40 (2020).

    MathSciNet  MATH  Google Scholar 

  13. L. El Fadil, “On power integral bases for certain pure number fields defined by \(x^{3^u\cdot 7^v}-m\),” Colloc. Math. 169, 307–317 (2022).

    Article  MATH  Google Scholar 

  14. L. El Fadil, “On power integral bases for certain pure sextic fields,” Bol. Soc. Paran. Math. 40, (2022).

    MathSciNet  Google Scholar 

  15. L. El Fadil, H. Ben Yakkou and J. Didi, “On power integral bases for certain pure number fields defined by \(x^{42}-m\),” Bol. Soc. Mat. Mex. 27, 81 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  16. L. El Fadil, H. Choulli and O. Kchit, “On monogenity of certain number fields defined by \(x^{60}-m\),” Acta Math. Vetnam. (2022). https://doi.org/10.1007/s40306-022-00481-2

    Google Scholar 

  17. L. El Fadil and O. Kchit, “On monogenity of certain number fields defined by \(x^{2^r\cdot 7^s}-m\),” Bol. Soc. Paran. Math. 41, 1–9 (2023).

    Google Scholar 

  18. L. El Fadil, J. Montes and E. Nart, “Newton polygons and \(p\)-integral bases of quartic number fields,” J. Alg. Appl.11 (4), 1–33 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. L. El Fadil and A. Najim, “On power integral bases for certain pure number fields defined by \(x^{2^u\cdot 3^v}-m\),” [arXiv:2106.01252] (2021).

  20. T. Funakura, “On integral bases of pure quartic fields,” Math. J. Okayama Univ. 26, 27–41 (1984).

    MathSciNet  MATH  Google Scholar 

  21. I. Gaál, “Power integer bases in algebraic number fields,” Ann. Univ. Sci. Budapest. Sect. Comp. 18, 61–87 (1999).

    MathSciNet  MATH  Google Scholar 

  22. I. Gaál, Diophantine Equations and Power Integral Bases, Theory and Algorithm, Second ed. (Boston, Birkhäuser, 2019).

    Book  MATH  Google Scholar 

  23. I. Gaál and L. Remete, “Binomial Thue equations and power integral bases in pure quartic fields,” JP J. Alg. Numb. Theory Appl. 32 (1), 49–61 (2014).

    MATH  Google Scholar 

  24. I. Gaál and L. Remete, “Integral bases and monogeneity of pure fields,” J. Numb. Theory 173 (1), 129–146 (2018).

    MATH  Google Scholar 

  25. J. Guardia, J. Montes and E. Nart, “Newton polygons of higher order in algebraic number theory,” Trans. AMS 364 (1), 361–416 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Hameed, T. Nakahara, S. M. Husnine and S. Ahmad, “On existence of canonical number system in certain classes of pure algebraic number fields,” J. Prime Res. Math. 7, 19–24 (2011).

    MathSciNet  MATH  Google Scholar 

  27. H. Hasse, Vorlesungen über Zahlentheorie (Akademie-Verlag, Berlin, 1963).

    MATH  Google Scholar 

  28. K. Hensel, “Arithmetische Untersuchungen über die gemeinsamen ausserwesentlichen Discriminantentheiler einer Gattung,” J. Reine Angew. Math. 113, 128–160 (1894).

    MathSciNet  MATH  Google Scholar 

  29. K. Hensel, Theorie der Algebraischen Zahlen (Teubner Verlag, Leipzig, Berlin, 1908).

    MATH  Google Scholar 

  30. J. Montes and E. Nart, “On a theorem of Ore,” J. Alg. 146 (2), 318–334 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Motoda, T. Nakahara and S. I. A. Shah, “On a problem of Hasse,” J. Numb. Theory 96, 326–334 (2002).

    Article  MATH  Google Scholar 

  32. J. Neukirch, Algebraic Number Theory (Springer-Verlag, Berlin, 1999).

    Book  MATH  Google Scholar 

  33. O. Ore, “Newtonsche Polygone in der Theorie der algebraischen Korper,” Math. Ann. 99, 84–117 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Pethö and M. Pohst, “On the indices of multiquadratic number fields,” Acta Arith. 153 (4), 393–414 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. H. Smith, “The monogeneity of radical extensions,” Acta Arith. 198 (3), 313–327 (2021).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous referee whose valuable comments and suggestions have tremendously improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Kchit or H. Choulli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kchit, O., Choulli, H. On Monogenity of Certain Pure Number Fields Defined by \(x^{2^r\cdot5^s\cdot 7^t}-m\). P-Adic Num Ultrametr Anal Appl 14 (Suppl 1), S1–S9 (2022). https://doi.org/10.1134/S2070046622050016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070046622050016

Keywords

Navigation