Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) March 23, 2023

Crystal structures of two phases of Pigment Yellow 110 from X-ray powder diffraction data

  • Jacco van de Streek EMAIL logo , Svetlana N. Ivashevskaya and Martin U. Schmidt

Abstract

The crystal structure of the β-phase of Pigment Yellow 110 was determined from X-ray Powder Diffraction (XRPD) data. The crystal structure of the α-phase (Erk et al., CrystEngComm 2004, 6, 474) is re-refined against the original XRPD data to modern-day standards. Dispersion-corrected density functional theory calculations are used to complement the powder data. The α- and β-form crystallise in P 1 and P21/c, respectively, with the P.Y. 110 molecule occupying a centre of symmetry in both forms. Both polymorphs are layered structures consisting of infinite chains of hydrogen-bonded molecules.


Corresponding author: Jacco van de Streek, Institute of Inorganic and Analytical Chemistry, Goethe University, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany, E-mail:

Acknowledgements

Peter Erk (BASF) is gratefully acknowledged for providing the original X-ray powder data of the α-phase of P.Y. 110. Tanja Reipen and Hans-Walter Stein (Clariant, now Heubach, Frankfurt) are gratefully acknowledged for the preparation of the β-phase of P.Y. 110. Edith Alig (Goethe University, Frankfurt) is gratefully acknowledged for the collection of the powder diffraction pattern of the β form. JvdS gratefully acknowledges the Villum Foundation (Denmark) for financial support (project no. VKR023111) for hardware and software. SNI gratefully acknowledges a grant from the Deutscher Akademischer Austauschdienst (DAAD) through the “Forschungsaufenthalte für Hochschullehrer und Wissenschaftler” programme in 2007. Avant-garde Materials Simulation GmbH (Germany) is gratefully acknowledged for providing a complimentary copy of GRACE. Crystal structures were visualised using Mercury [27].

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Hunger, K., Schmidt, M. U. Industrial Organic Pigments: Production, Properties, Applications; Wiley-VCH: Weinheim, 2018.10.1002/9783527648320Search in Google Scholar

2. Ohoka, S., Ohki Yamaguchi, S. I. Yellow Pigment for Polyolefins. Japanese Patent JP 58001150 B4, 1975.Search in Google Scholar

3. Momoi, Y., Yamane, M., Yamaguchi, I. Yellow Pigment for Polyolefins. Japanese Patent JP 58001151 B4, 1975.Search in Google Scholar

4. Baebler, F. Neue stabile Modifikation eines Isoindolinon-Pigments. Verfahren zu deren Herstellung und deren Verwendung. German Patent DE 2804062, 1978.Search in Google Scholar

5. Dainippon Ink. Yellow Isoindolinone Pigment. Japanese Patent JP 55065257 A2, 1978.Search in Google Scholar

6. Dainippon Ink. Yellow Isoindolinone Pigment. Japanese Patent JP 63049711, 1981.Search in Google Scholar

7. Erk, P., Hengelsberg, H., Haddow, M. F., Van Gelder, R. The innovative momentum of crystal engineering. CrystEngComm 2004, 6, 474–483; https://doi.org/10.1039/b409282a.Search in Google Scholar

8. Yatsenko, A. V., Paseshnichenko, K. A., Chernyshev, V. V., Schenk, H. 1-[(2-Nitro-phenyl)-hydrazono]-1H-naphthalen-2-one (Pigment Orange 2) from powder data. Acta Crystallogr. 2001, E57, o1152–o1153; https://doi.org/10.1107/s1600536801018268.Search in Google Scholar

9. Van de Streek, J., Brüning, J., Ivashevskaya, S. N., Ermrich, M., Paulus, E. F., Bolte, M., Schmidt, M. U. Structures of six industrial benzimidazolone pigments from laboratory powder diffraction data. Acta Crystallogr. 2009, B65, 200–211; https://doi.org/10.1107/s0108768108041529.Search in Google Scholar

10. Grimme, S., Antony, J., Ehrlich, S., Krieg, H. J. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. Chem. Phys. 2010, 132, 154104-1–154104-19; https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed

11. STOE & Cie. WinXPOW; STOE & Cie GmbH: Darmstadt, 2004.Search in Google Scholar

12. David, W. I. F., Shankland, K., Van de Streek, J., Pidcock, E., Motherwell, W. D. S., Cole, J. C. DASH: a program for crystal structure determination from powder diffraction data. J. Appl. Crystallogr. 2006, 39, 910–915; https://doi.org/10.1107/s0021889806042117.Search in Google Scholar

13. Brückner, S. Estimation of the background in powder diffraction patterns through a robust smoothing procedure. J. Appl. Crystallogr. 2000, 33, 977–979; https://doi.org/10.1107/s0021889800003617.Search in Google Scholar

14. Hofmann, D. W. M. Fast estimation of crystal densities. Acta Crystallogr. 2002, B57, 489–493; https://doi.org/10.1107/s0108768101021814.Search in Google Scholar PubMed

15. Boultif, A., Louër, D. Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. J. Appl. Crystallogr. 1991, 24, 987–993; https://doi.org/10.1107/s0021889891006441.Search in Google Scholar

16. Markvardsen, A. J., David, W. I. F., Johnson, J. C., Shankland, K. A probabilistic approach to space-group determination from powder diffraction data. Acta Crystallogr. 2001, A57, 47–54; https://doi.org/10.1107/s0108767300012174.Search in Google Scholar PubMed

17. Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 1981, 14, 357–361; https://doi.org/10.1107/s0021889881009618.Search in Google Scholar

18. Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Crystallogr. 2018, 51, 210–218; https://doi.org/10.1107/s1600576718000183.Search in Google Scholar

19. Dollase, W. A. Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J. Appl. Crystallogr. 1986, 19, 267–272; https://doi.org/10.1107/s0021889886089458.Search in Google Scholar

20. Neumann, M. A. Grace Version 2.1; Avant-garde Materials Simulation SARL: France, 2013.Search in Google Scholar

21. Kresse, G., Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. 1993, B47, 558–561; https://doi.org/10.1103/physrevb.47.558.Search in Google Scholar PubMed

22. Kresse, G., Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. 1996, B54, 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar PubMed

23. Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. 1999, B59, 1758–1775; https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

24. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar PubMed

25. Van de Streek, J., Neumann, M. A. Validation of molecular crystal structures from powder diffraction data with DFT-D. Acta Crystallogr. 2014, B70, 1020–1032.10.1107/S2052520614022902Search in Google Scholar PubMed PubMed Central

26. Van de Streek, J. The crystal structure of Pigment Yellow 181 dimethylsulfoxide N-methyl-2-Pyrrolidone solvate (1:1:1) from XRPD + DFT-D. Acta Crystallogr. 2015, B71, 89–94.10.1107/S2052520615000724Search in Google Scholar PubMed PubMed Central

27. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M., Wood, P. A. Mercury 4.0: from visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235; https://doi.org/10.1107/s1600576719014092.Search in Google Scholar PubMed PubMed Central

Received: 2023-01-29
Accepted: 2023-03-12
Published Online: 2023-03-23
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 27.4.2024 from https://www.degruyter.com/document/doi/10.1515/zkri-2023-0003/html
Scroll to top button